Problème 1:

- (a) Une boucle for et deux variables avec une affectation multiple.
 - (b) Traiter le cas n = 0. Dans le cas $n \neq 0$, construire une liste et utiliser son dernier et son avant-dernier élément.
- (a) Calculer $au_{n+1} + bu_n$ en factorisant par λr_1^n pour une partie de l'expression et par μr_2^n pour l'autre.
- i. Résoudre le système $\begin{cases} u_0 = \lambda + \mu \\ u_1 = \lambda r_1 + \mu r_2 \end{cases}$ d'inconnues λ et μ . ii. Les deux rangs d'initialisation sont donnés par la question précédente. L'hérédité se fait de la même façon que la question 2.a.
 - (c) Montrer l'objectif.
- 3. (a) On a $\Delta = 0$.
 - (b) Calculer $au_{n+1} + bu_n$ en factorisant par λr^n pour une partie de l'expression et par μnr^n pour une autre. Il reste un terme $a\mu r^{n+1}$, montrer qu'il est égal à $2\mu r^{n+2}$.
 - i. Avec un système de deux équations à deux inconnues.
 - ii. Les deux rangs d'initialisation sont donnés par la question précédente. L'hérédité se fait de la même façon que la question 3.b.
 - (d) Montrer l'objectif.

Problème 2:

- 1. (a) Etudier la continuité de f.
 - (b) Il faut que -1 ne soit pas compris entre x et $\frac{1}{x}$. Faire une disjonction de cas selon le signe de x.
- (a) Calcul et simplifications.
 - (b) Le premier g(x) est celui de la définition, le deuxième est celui obtenu à la question précédente. Quand on les sommes, il doit y avoir une simplification qui conduit à une primitive usuelles.
 - (c) On a la valeur de 2g(x).
- 3. Avec de la trigonométrie, montrer que $I=\int_{\alpha}^{\frac{\pi}{2}-\alpha}\frac{1}{(1+\tan(\theta))^2}d\theta$ puis faire le changement de variable $t=\tan\theta$ qui doit faire apparaître la fonction g.