Devoir surveillé nº 8:

Lundi 29 avril

3 h

Les résultats doivent être encadrés. Les calculatrices sont interdites.

Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Exercice 1:

Calculer les limites suivantes :

1.
$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=n}^{2n} \frac{k}{k+n},$$

2.
$$\lim_{n \to +\infty} \frac{1}{n^2} \sum_{k=0}^{n-1} k e^{k/n}$$
,

3.
$$\lim_{n \to +\infty} \frac{1}{n^{3/2}} \sum_{k=1}^{n} \frac{\ln(k+n) - \ln(n)}{\sqrt{k+n}}$$
.

Exercice 2:

On considère la fonction $f: x \mapsto \int_{x}^{2x} \frac{e^{-t}}{t} dt$.

- 1. Montrer que f est définie sur \mathbb{R}^{+*} .
- 2. (a) Montrer que f est dérivable sur \mathbb{R}^{+*} et calculer sa dérivée.
 - (b) En déduire les variations de f.
- 3. Etudier la limite en 0^+ de f.
- 4. Etudier la limite en $+\infty$ de f.

Problème 1:

Dans ce problème, nous allons étudier la notion d'endomorphisme cyclique dont la définition est donnée ci-dessous. Soit f un endomorphisme d'un espace vectoriel E de dimension finie $n \in \mathbb{N}^*$.

On rappelle que pour tout entier $p \in \mathbb{N}^*$, on note :

$$f^0 = \mathrm{Id}_E$$
, $f^1 = f$, $f^2 = f \circ f$, $f^p = \underbrace{f \circ \cdots \circ f}_{p \text{ fois}}$.

On dit que l'endomorphisme f est cyclique ssi il existe un vecteur $v \in E$ tel que la famille $(v, f(v), ..., f^{n-1}(v))$ soit une base de l'espace vectoriel *E*.

On dit que l'endomorphisme f est diagonalisble ssi il existe $\mathcal{B} = (e_1, \dots, e_n)$ base de E et $(\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n$ tels que :

$$\forall k \in [[1, n]], f(e_k) = \lambda_k e_k.$$

Ce problème est composé de quatre parties indépendantes. Les trois premières sont consacrées à l'étude de différents exemples. Dans la dernière partie, on détermine une condition suffisante pour qu'un endomorphisme diagonalisable soit cyclique.

1. Etude d'un premier exemple

Dans cette partie, on considère l'endomorphisme $f: \mathbb{R}^2 \to \mathbb{R}^2$ défini par :

$$\forall (x, y) \in \mathbb{R}^2$$
, $f(x, y) = (4x - 2y, x + y)$

- i. Montrer que $f \in \mathcal{L}(\mathbb{R}^2)$.
 - ii. Déterminer ker(f) et Im(f).
 - iii. Montrer que $f \in GL(\mathbb{R}^2)$.
- (b) En considérant $\nu = (1,0) \in \mathbb{R}^2$, montrer que f est un endomorphisme cyclique de \mathbb{R}^2 .
- i. Déterminer une base de $\ker(f-2Id_{\mathbb{R}^2})$ et une base de $\ker(f-3Id_{\mathbb{R}^2})$. ii. Montrer que $\ker(f-2Id_{\mathbb{R}^2}) \oplus \ker(f-3Id_{\mathbb{R}^2}) = \mathbb{R}^2$. iii. En déduire que f est diagonalisable.
- (d) Existe-t-il un vecteur $w \in \mathbb{R}^2$ non nul tel que la famille (w, f(w)) ne soit pas une base de \mathbb{R}^2 ?

2. Etude d'un deuxième exemple

Dans cette partie, on considère l'endomorphisme $g: \mathbb{R}^3 \to \mathbb{R}^3$ défini par :

$$\forall (x, y, z) \in \mathbb{R}^3, g(x, y, z) = (-y + z, -x - z, x - y)$$

- (a) Montrer que l'on a la relation $g^2 = g + 2Id_{\mathbb{R}^3}$.
- (b) Montrer que $\ker(g + Id_{\mathbb{R}^3}) \oplus \ker(g 2Id_{\mathbb{R}^3}) = \mathbb{R}^3$.
- (c) En déduire que g est diagonalisable.
- (d) L'endomorphisme g est-il cyclique?

3. Etude d'un troisième exemple

Dans cette partie, on fixe un entier $n \in \mathbb{N} \setminus \{0, 1\}$ et on considère l'application Δ définie sur $\mathbb{R}_n[X]$ par :

$$\forall P \in \mathbb{R}_n[X], \quad \Delta(P) = P(X+1) - P(X)$$

Par exemple, on a $\Delta(X^2) = (X+1)^2 - X^2 = 2X+1$

- (a) Montrer que Δ est un endomorphisme de $\mathbb{R}_n[X]$.
- (b) Soit $k \in [0, n]$. Calculer $\Delta(X^k)$ sous une forme développée.
- (c) En déduire que si $P \in \mathbb{R}_n[X]$ est un polynôme non constant, alors $\deg(\Delta(P)) = \deg(P) 1$.
- (d) Montrer que l'endomorphisme Δ est cyclique.

4. Cas d'un endomorphisme diagonalisable

Dans cette partie, on considère un endomorphisme diagonalisable h d'un \mathbb{C} -espace vectoriel E de dimension finie $n \in \mathbb{N}^*$. On souhaite déterminer une condition suffisante sur les valeurs propres de h pour que cet endomorphisme soit cyclique.

Comme l'endomorphisme h est diagonalisable, il existe $\mathcal{B} = (e_1, \dots, e_n)$ base de E et $(\lambda_1, \dots, \lambda_n) \in \mathbb{C}^n$ tels que :

$$\forall k \in [[1, n]], h(e_k) = \lambda_k e_k.$$

On suppose que les λ_k , $k \in [1, n]$ sont deux à deux distincts :

$$\forall i, j \in [[1, n]], i \neq j \Rightarrow \lambda_i \neq \lambda_j$$

Soit $v \in E$. Comme \mathcal{B} est une base de E, il existe $(\alpha_1, \dots, \alpha_n) \in \mathbb{C}^n$ tel que :

$$v = \alpha_1 e_1 + \dots + \alpha_n e_n$$

(a) Montrer que pour tout $p \in \mathbb{N}^*$, on a :

$$h^{p}(v) = \alpha_{1} \lambda_{1}^{p} e_{1} + \dots + \alpha_{n} \lambda_{n}^{p} e_{n}$$

- (b) Montrer que, si : $\forall k \in [1, n]$, $\alpha_k \neq 0$, alors la famille $(v, h(v), ..., h^{n-1}(v))$ est libre. On pourra compter les racines d'un polynôme bien choisi.
- (c) Conclure que *h* est cyclique.

Problème 2 :

On note E l'espace vectoriel des fonctions à valeurs réelles continues sur \mathbb{R}_+ .

Pour tout élément f de E et tout $x \in \mathbb{R}_+$, on pose $F(x) = \int_0^x f(u) du$.

1. Justifier que F est de classe C^1 sur \mathbb{R}_+ et donner pour tout $x \in \mathbb{R}_+$ l'expression de F'(x).

Soit
$$\Psi: f \in E \mapsto \Psi(f)$$
 définie par : $\forall x \in \mathbb{R}_+, \ \Psi(f)(x) = \int_0^1 f(xt) dt$.

- 2. Exprimer, pour tout réel x strictement positif, $\Psi(f)(x)$ à l'aide de F(x).
- 3. Justifier que la fonction $\Psi(f)$ est continue sur \mathbb{R}_+ et donner la valeur de $\Psi(f)(0)$.
- 4. Montre que Ψ est un endomorphisme de E.
- 5. Surjectivité de Ψ

Soit
$$h: x \in \mathbb{R}_+ \to h(x) = \begin{cases} x \sin\left(\frac{1}{x}\right) & \text{pour } x > 0 \\ 0 & \text{pour } x = 0 \end{cases}$$

- (a) Montrer que la fonction h est continue sur \mathbb{R}_+ .
- (b) La fonction h est-elle de classe C^1 sur \mathbb{R}_+ ?
- (c) Soit $g \in \text{Im}(\Psi)$.

Montrer que la fonction $x \mapsto xg(x)$ est de classe \mathcal{C}^1 sur \mathbb{R}_+ .

- (d) A-t-on $h \in \text{Im}(\Psi)$?
- (e) Conclure.
- 6. Montrer que Ψ est injective.
- 7. Soit $n \in \mathbb{N}$, n > 1. Pour $i \in [1, n]$, on pose :

$$f_i: x \in \mathbb{R}_+ \longmapsto f_i(x) = x^i \text{ et } g_i: x \in \mathbb{R}_+ \longmapsto g_i(x) = \begin{cases} x^i \ln(x) & \text{pour } x > 0 \\ 0 & \text{pour } x = 0 \end{cases}$$

On note $\mathcal{B} = (f_1, \dots, f_n, g_1, \dots, g_n)$ et F_n le sous-espace vectoriel de E engendré par \mathcal{B} .

(a) On veut montrer que la famille $\mathcal{B} = (f_1, \dots, f_n, g_1, \dots, g_n)$ est une base de F_n

Soient
$$(\alpha_i)_{i \in [1,n]}$$
 et $(\beta_j)_{j \in [1,n]}$ des scalaires tels que $\sum_{i=1}^n \alpha_i f_i + \sum_{j=1}^n \beta_j g_j = 0$. (*)

i. Montrer que $\alpha_1 = \beta_1 = 0$.

On pourra simplifier l'expression (*) par x lorsque x est non nul.

- ii. Soit $p \in [1, n-1]$. On suppose que $\alpha_1 = \cdots = \alpha_p = \beta_1 = \cdots = \beta_p = 0$. Démontrer que $\alpha_{p+1} = \beta_{p+1} = 0$.
- iii. Conclure et déterminer la dimension de l'espace vectoriel F_n .
- (b) Où l'on démontre que Ψ induit un endomorphisme sur F_n
 - i. Soit $p \in \mathbb{N}^*$. Calculer $\Psi(f_p)$.
 - ii. Soient a, x > 0 et $p \in \mathbb{N}^*$. Calculer $\int_a^x t^p \ln(t) dt$. En déduire la valeur de $\int_0^x g_p(t) dt$ puis celle de $\Psi(g_p)$.
 - iii. En déduire que Ψ induit un endomorphisme Ψ_n sur F_n .
- (c) Démontrer que Ψ_n est un automorphisme de F_n .