Chapitre 17: Intégration

Sauf mention contraire, a et b désigneront deux réels tels que a < b.

I Fonctions en escalier

1.1 Subdivision d'un segment

Définition 1

• On appelle **subdivision** σ d'un segment [a,b] toute famille $\sigma = (c_0,c_1,\ldots,c_n)$ de nombres réels tels que $c_0 = a, c_n = b$ et : $\forall i \in [1,n], c_{i-1} < c_i$, c'est-à-dire :

$$a = c_0 < c_1 < \cdots < c_n = b$$
.

• On appelle pas de la subdivision σ l'écart maximal entre deux points consécutifs de la subdivision :

$$\max_{0 \le j \le n-1} (c_{j+1} - c_j).$$

• On appelle subdivision régulière de [a, b] la subdivision définie par :

$$\forall j \in [0, n], c_j = a + j \frac{b - a}{n}.$$

Illustration:

Subdivision quelconque

Subdivision régulière

Remarque: Le pas de la subdivision régulière définie par $\forall j \in [0, n], c_j = a + j \frac{b-a}{n}$ est $\frac{b-a}{n}$.

Définition 2

Soient $\sigma = (c_0, c_1, \dots, c_n)$ et $\sigma' = (c'_0, c'_1, \dots, c'_{n'})$ des subdivisions de [a, b].

On dit que σ' est plus fine que σ ssi :

$${c_i, i \in [0, n]} \subset {c'_i, i \in [0, n']}.$$

Illustration:

$$a = c_0 = c_0'$$
 $c_1 = c_1'$ c_2' $c_2 = c_3'$ $c_3 = c_4'$ c_5' c_6' $b = c_4 = c_7'$

 σ' est plus fine que σ

1.2 Fonctions en escaliers

Définition 3

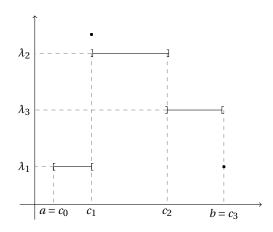
Soit $f:[a,b]\to\mathbb{R}$ une fonction. La fonction f est dite **en escalier** sur [a,b] s'il existe une subdivision $\sigma=(c_0,c_1,\ldots,c_n)$ de [a,b] et $\lambda_1,\ldots,\lambda_n\in\mathbb{R}$ tels que :

$$\forall i \in [1, n], \forall x \in]c_{i-1}, c_i[, f(x) = \lambda_i.$$

Une telle subdivision σ est dite adaptée à la fonction en escalier f.

On note $\mathcal{E}([a,b],\mathbb{R})$ l'ensemble des fonctions en escalier de [a,b] dans \mathbb{R} .

Illustration:



1.3 Intégrale d'une fonction en escalier

Définition 4

Soit $f:[a,b]\to\mathbb{R}$ une fonction en escalier sur [a,b] et $\sigma=(c_0,c_1,\ldots,c_n)$ une subdivision de [a,b] adaptée à f. Soient $\lambda_1,\ldots,\lambda_n\in\mathbb{R}$ tels que :

$$\forall i \in [\![1,n]\!], \forall x \in]c_{i-1},c_i[,f(x)=\lambda_i.$$

On appelle **intégrale de** f **sur** [a,b] le réel noté $\int_{[a,b]} f$ ou $\int_a^b f$ ou $\int_a^b f(x) dx$ défini par :

$$\int_{[a,b]} f = \int_a^b f = \int_a^b f(x) dx = \sum_{i=1}^n \lambda_i (c_i - c_{i-1}).$$

Remarque : Cette définition ne dépend pas du choix de la subdivision adaptée à f.

• Commençons par monter l'invariance lorsque l'on rajoute un point à une subdivision.

Soit $\sigma = (c_0, c_1, ..., c_n)$ une subdivision de [a, b] adaptée à f.

Soit $y \in [a,b] \setminus \{c_0,\ldots,c_n\}$, alors il existe $m \in [1,n]$ tel que $c_{m-1} < y < c_m$. On considère la subdivision σ à laquelle on ajoute le point y, c'est-à-dire, soit $\sigma' = (c_0,c_1,\ldots,c_m,y,c_{m+1},\ldots,c_n)$. σ' est une subdivision de [a,b] adaptée à f.

La somme définissant l'intégrale en utilisant la subdivision σ' est :

$$\sum_{i=1}^{m-1} \lambda_i (c_i - c_{i-1}) + \lambda_m (y - c_{m-1}) + \lambda_m (c_m - y) + \sum_{i=m+1}^n \lambda_i (c_i - c_{i-1}) = \sum_{i=1}^{m-1} \lambda_i (c_i - c_{i-1}) + \lambda_m (c_m - c_{m-1}) + \sum_{i=m+1}^n \lambda_i (c_i - c_{i-1}) + \sum_{i=1}^n \lambda_i (c_i - c_{i-1})$$

qui est bien la somme définissant l'intégrale en utilisant la subdivision $\sigma.$

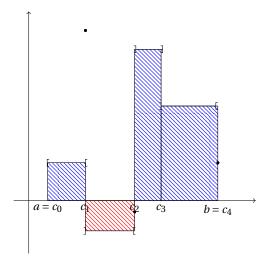
• Montrons le cas général.

Soient σ et σ' deux subdivisions de [a,b] adaptées à f. Comme $\sigma \cup \sigma'$ est construite à partir de σ en lui rajoutant des points, le cas précédent montre que la somme définissant l'intégrale en utilisant la subdivision $\sigma \cup \sigma'$ est égale à la somme définissant l'intégrale en utilisant la subdivision σ .

De même la somme définissant l'intégrale en utilisant la subdivision $\sigma \cup \sigma'$ est égale à la somme définissant l'intégrale en utilisant la subdivision σ' .

Donc la somme définissant l'intégrale en utilisant la subdivision σ est égale à la somme définissant l'intégrale en utilisant la subdivision σ' .

Illustration:



En bleu: aires avec un signe +, en rouge: aires avec un signe -

II Intégrale d'une fonction continue sur un segment

2.1 Idée de la construction

Les preuves de ces résultats ne sont pas au programme. Il faut juste comprendre comment l'intégrale est construite.

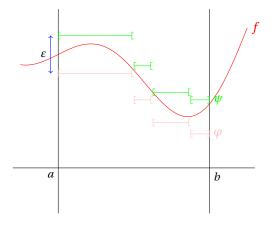
Théorème 1

Soit $f : [a, b] \to \mathbb{R}$ continue.

Pour tout $\varepsilon > 0$, il existe deux fonctions φ , $\psi \in \mathcal{E}([a,b],\mathbb{R})$ telles que :

$$\varphi \le f \le \psi$$
 et $\psi - \varphi \le \varepsilon$.

Illustration:



Théorème 2

Soit $f:[a,b] \to \mathbb{R}$ continue. Alors

•
$$\left\{ \int_{a}^{b} \varphi, \varphi \in \mathcal{E}([a,b],\mathbb{R}) \text{ et } \varphi \leq f \right\}$$
 admet une borne supérieure que l'on note $I_{[a,b]}^{-}(f)$

•
$$\left\{\int_a^b \psi, \ \psi \in \mathcal{E}([a,b],\mathbb{R}) \ \text{et} \ f \leq \psi\right\}$$
 admet une borne inférieure que l'on note $I^+_{[a,b]}(f)$ at on a :

$$I_{[a,b]}^{-}(f) = I_{[a,b]}^{+}(f).$$

Définition 5

Soit $f:[a,b]\to\mathbb{R}$ une fonction continue. On appelle **intégrale de** f **sur** [a,b] le réel noté $\int_{[a,b]}^b f$ ou $\int_a^b f$ ou $\int_a^b f(x)dx$ définit par :

$$\int_{[a,b]} f = \int_a^b f = \int_a^b f(x) dx = \sup \left\{ \int_a^b \varphi \,,\, \varphi \in \mathcal{E}([a,b],\mathbb{R}) \text{ et } \varphi \leq f \right\} = \inf \left\{ \int_a^b \psi \,,\, \psi \in \mathcal{E}([a,b],\mathbb{R}) \text{ et } f \leq \psi \right\}.$$

Proposition 1

Soit $f : [a, b] \to \mathbb{R}$ continue.

Il existe deux suites $(\varphi_n)_{n\in\mathbb{N}}$, $(\psi_n)_{n\in\mathbb{N}}$ de fonctions en escalier telles que :

$$\forall n \in \mathbb{N}, \ \varphi_n \leq f \leq \psi_n \quad \text{ et } \quad \lim_{n \to +\infty} \int_a^b \varphi_n = \int_a^b f \text{ et } \lim_{n \to +\infty} \int_a^b \psi_n = \int_a^b f.$$

2.2 Propriétés de l'intégrale

Proposition 2 : Linéarité de l'intégrale

Soient $f, g \in C^0([a, b], \mathbb{R})$ et $\lambda, \mu \in \mathbb{R}$.

$$\int_a^b (\lambda f + \mu g) = \lambda \int_a^b f + \mu \int_a^b g$$

Proposition 3 : Positivité de l'intégrale

Soit $f \in \mathcal{C}^0([a,b],\mathbb{R})$.

Si $f \ge 0$ sur [a, b] alors $\int_a^b f \ge 0$.

Remarque : Ce résultat n'est vrai que lorsqu'on suppose $a \le b$ ce qui est le cas ici.

Proposition 4 : Croissance de l'intégrale

Soient $f, g \in \mathcal{C}^0([a, b], \mathbb{R})$. Si $f \leq g$ sur [a, b] alors $\int_a^b f \leq \int_a^b g$.

Proposition 5: Inégalité triangulaire intégrale

Soit $f \in \mathcal{C}^0([a,b],\mathbb{R})$.

$$\left| \int_{a}^{b} f \right| \le \int_{a}^{b} |f|.$$

Proposition 6: Relation de Chasles

Soit $f \in C^0([a, b], \mathbb{R})$ et $c \in]a, b[$. Alors

$$\int_a^b f = \int_a^c f + \int_c^b f.$$

Remarque: En généralisant ce résultat à c = b, on a : $\int_a^b f = \int_a^b f + \int_b^b f$, d'où $\int_b^b f = 0$.

En généralisant encore ce résultat, on a : $\int_a^b f + \int_b^a f = \int_a^a f = 0$, d'où $\int_b^a f = -\int_a^b f$. Cela permet donc d'écrire une intégrale avec des bornes dans un sens quelconque.

2.3 Généralisation des propriétés de l'intégrale

Définition 6

Soit $f \in C^0([a, b], \mathbb{R})$, on pose :

$$\int_{b}^{a} f = -\int_{a}^{b} f \text{ et } \int_{a}^{a} f = 0.$$

5

Proposition 7

Soient f, g continues sur un intervalle I. Soient a, b, $c \in I$, soient λ , $\mu \in \mathbb{R}$

•
$$\int_a^b (\lambda f + \mu g) = \lambda \int_a^b f + \mu \int_a^b g$$
.

$$\bullet \left| \int_{a}^{b} f \right| \le \left| \int_{a}^{b} |f| \right|.$$

•
$$\int_a^b f = \int_a^c f + \int_c^b f.$$

Proposition 8

Soient $f, g \in C^0([a, b], \mathbb{R})$.

- Si $f \ge 0$ sur [a, b] alors $\int_b^a f \le 0$. Si $f \le g$ sur [a, b] alors $\int_b^a f \ge \int_b^a g$.

Soit $f \in \overline{C}^0([0,1])$. Montrer que :

$$\lim_{n\to+\infty}\int_0^1 t^n f(t)\,dt = 0.$$

Soient a < b. Soit f une fonction de classe C^1 sur [a, b]. Montrer le lemme de Lebesgue :

$$\lim_{n \to +\infty} \int_{a}^{b} f(t) \sin(nt) dt = 0.$$

Calculer:

$$\lim_{x \to 0} \int_{x}^{2x} \frac{e^{t}}{t} dt.$$

Soient 0 < a < b, déterminer :

$$\lim_{n\to+\infty}\int_a^b \cos(nt^2)\,dt.$$

Fonctions continues positives d'intégrale nulle

Théorème 3

Soit $f \in \mathcal{C}^0([a,b],\mathbb{R})$ une fonction continue sur [a,b] de signe constant.

Alors $\int_{a}^{b} f = 0$ si et seulement si f est nulle sur [a, b].

Remarque : Ce résultat montre également que si f > 0 (resp. f < 0) alors $\int_a^b f > 0$ (resp. $\int_a^b f > 0$).

- \Rightarrow **Exemple 5:** Soit f continue sur [0,1] telle que $\int_0^1 f(t) dt = \frac{1}{2}$. Montrer que f admet un point fixe dans [0,1].
- \Rightarrow **Exemple 6:** Soit f continue sur [0,1] telle que $\int_0^1 f(t) dt = 0$. On pose : $m = \min_{[0,1]} f$ et $M = \max_{[0,1]} f$. Montrer que :

$$\int_0^1 f^2 \le -mM.$$

2.5 Cas particuliers

Définition 7

Soit $f \in C^0([a, b], \mathbb{R})$, on appelle valeur moyenne de f sur [a, b] la quantité :

$$\frac{1}{b-a}\int_a^b f.$$

 \Rightarrow **Exemple 7:** Soit $f \in C^0([a,b])$, montrer que:

$$\exists c \in [a, b], f(c) = \frac{1}{b - a} \int_{a}^{b} f$$

6

Proposition 9

Soit a > 0 et soit $f \in C^0([-a, a], \mathbb{R})$.

• Si *f* est impaire, alors :

$$\int_{-a}^{a} f = 0,$$

ainsi, la valeur moyenne de f sur [-a, a] est nulle.

• Si f est paire, alors :

$$\int_{-a}^{a} f = 2 \int_{0}^{a} f,$$

ainsi, la valeur moyenne de f sur [-a, a] est égale à sa valeur moyenne sur [0, a].

Proposition 10

Soit T>0, soit $f\in \mathcal{C}^0(\mathbb{R},\mathbb{R})$ une fonction T-périodique. Alors :

$$\forall x \in \mathbb{R}, \int_{x}^{x+T} f = \int_{0}^{T} f.$$

Ainsi, la valeur moyenne de f sur tout segment de longueur T est constante.

III Sommes de Riemann

Définition 8

Soit $f:[a,b]\to\mathbb{R}$ une fonction et $n\in\mathbb{N}^*$. On appelle sommes de Riemann les sommes :

$$\frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a + k \frac{b-a}{n}\right)$$

et

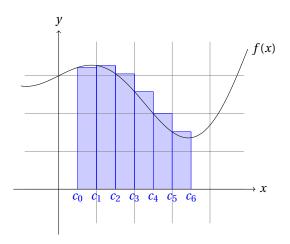
$$\frac{b-a}{n} \sum_{k=1}^{n} f\left(a + k \frac{b-a}{n}\right)$$

Illustration:

On pose:

$$\forall k \in [0, n], c_k = a + k \frac{b - a}{n}.$$

Et on prend, pour l'illustration : n = 6.



L'aire en bleu est égale à :

$$\frac{b-a}{n}\sum_{k=0}^{n-1}f\left(a+k\frac{b-a}{n}\right).$$

L'aire en rouge est égale à :

$$\frac{b-a}{n} \sum_{k=1}^{n} f\left(a + k \frac{b-a}{n}\right).$$

Théorème 4

Si f est continue sur [a, b] à valeurs dans \mathbb{R} , alors :

$$\lim_{n \to +\infty} \frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a + k \frac{b-a}{n}\right) = \int_a^b f$$

et

$$\lim_{n \to +\infty} \frac{b-a}{n} \sum_{k=1}^{n} f\left(a + k \frac{b-a}{n}\right) = \int_{a}^{b} f$$

Remarque:

• En pratique, on utilise très souvent ce résultat pour a = 0 et b = 1, on a alors :

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right) = \int_0^1 f$$

et

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) = \int_{0}^{1} f$$

• Dans une somme de Riemann, il n'y a que des termes en $\frac{k}{n}$, et pas de termes en k ni en n seuls. **Remarque :** On a montré que, si $f \in \mathcal{C}^1([a,b])$, alors :

$$\left| \int_{a}^{b} f(x) dx - \frac{b-a}{n} \sum_{k=0}^{n-1} f(c_{k}) \right| \le M \frac{(b-a)^{2}}{2n}.$$

Donc:

$$\int_{a}^{b} f(x) dx = \frac{b - a}{n} \sum_{k=0}^{n-1} f(c_k) + O\left(\frac{1}{n}\right).$$

On a donc montré que la méthode des rectangles donne une approximation de l'intégrale en $O\left(\frac{1}{n}\right)$. On peut améliorer cette approximation en utilisant la méthode des trapèzes. On obtient alors une approximation en $O\left(\frac{1}{n^2}\right)$ pour une fonction de classe \mathcal{C}^2 , ce qui est plus précis car $\left(\frac{1}{n^2}\right)$ tend plus vite vers 0 que $\left(\frac{1}{n}\right)$.

⇒ Exemple 8: Calculer:

1.
$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} \frac{1}{1 + e^{-k/n}}$$
,

2.
$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{k^2}{n^3 + k^2 n}$$
,

3.
$$\lim_{n \to +\infty} \frac{1}{n^2} \prod_{k=1}^{n} (k^2 + n^2)^{1/n}$$
.

 \Rightarrow **Exemple 9:** Calculer, pour $x \in \mathbb{R} \setminus \{-1, 1\}$:

$$I(x) = \int_0^{2\pi} \ln(x^2 - 2x\cos t + 1) dt.$$

IV Lien entre intégrale et primitive

Dans ce paragraphe, I désignera un intervalle non vide de \mathbb{R} non vide et non réduit à un point.

Théorème 5: Théorème fondamental de l'analyse

Soient
$$f \in \mathcal{C}^0(I)$$
 et $a \in I$. Soit
$$F: \quad I \to \mathbb{R}$$
$$x \mapsto \int_a^x f(t) dt$$
.

Alors F est une primitive de f.

Corollaire 1

Toute fonction continue sur un intervalle I de \mathbb{R} admet au moins une primitive sur I.

Corollaire 2

Soit $f \in C^0(I)$, soit F une primitive de f sur I alors :

$$\forall a,b \in I, \int_a^b f(t)dt = F(b) - F(a).$$

⇔ Exemple 10: On pose:

$$\varphi \colon \mathbb{R} \to \mathbb{R}$$

$$t \mapsto \begin{cases} \frac{\sinh(t)}{t} & \text{si } t \neq 0 \\ 1 & \text{si } t = 0 \end{cases} \text{ et } f \colon x \mapsto \int_{x}^{2x} \varphi(t) \, dt.$$

Etudier le domaine de définition de f, sa parité et sa dérivée.

Arr **Exemple 11:** Soit *g* une fonction continue sur R. On pose :

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \int_0^x \sin(x-t)g(t) dt$$

Montrer que f est deux fois dérivable et que :

$$\forall x \in \mathbb{R}, f'(x) = \int_0^x \cos(x - t)g(t) \, dt \text{ et } f''(x) = g(x) - \int_0^x \sin(x - t)g(t) \, dt.$$

V Inégalité de Taylor-Lagrange

Théorème 6 : Inégalité de Taylor-Lagrange

Soit $n \in \mathbb{N}$, soit $f \in \mathcal{C}^{n+1}(I)$, soit $a \in I$.

On suppose qu'il existe $M \in \mathbb{R}^+$ tel que :

$$\forall t \in I, |f^{(n+1)}(t)| \le M.$$

On a:

$$\forall x \in I, \left| f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^k \right| \le M \frac{|x - a|^{n+1}}{(n+1)!}.$$

Remarque:

- Si I est un segment, le théorème des bornes atteintes assure l'existence d'un majorant de $|f^{(n+1)}|$, mais le majorant dépend, a priori, de n.
- L'inégalité de Taylor-Lagrange est globale contrairement à la formule de Taylor-Young qui est locale.
- **⇔** Exemple 12: Montrer que:

$$\forall x \in \mathbb{R}^+, |\ln(1+x) - x + \frac{x^2}{2}| \le \frac{x^3}{3}.$$

⇒ **Exemple 13:** Montrer que:

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} = \ln(2).$$

9

VI Fonctions à valeurs complexes

Définition 9

Soit $f : [a, b] \to \mathbb{C}$ une fonction continue.

On appelle **intégrale de** f **sur** [a,b] le nombre complexe défini par :

$$\int_{a}^{b} f = \int_{a}^{b} \operatorname{Re}(f) + i \int_{a}^{b} \operatorname{Im}(f).$$

Les résultats suivants restent valables pour les fonctions à valeurs complexes :

Proposition 11 : Linéarité de l'intégrale

Soient $f, g \in C^0([a, b], \mathbb{C})$ et $\lambda, \mu \in \mathbb{R}$.

$$\int_{a}^{b} (\lambda f + \mu g) = \lambda \int_{a}^{b} f + \mu \int_{a}^{b} g$$

Proposition 12: Inégalité triangulaire intégrale

Soit $f \in \mathcal{C}^0([a,b],\mathbb{C})$.

$$\left| \int_{a}^{b} f \right| \le \int_{a}^{b} |f|.$$

Proposition 13: Relation de Chasles

Soit $f \in C^0([a, b], \mathbb{C})$ et $c \in a, b[$. Alors

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f.$$

Théorème 7 : Sommes de Riemann

Soit $f \in C^0([a, b], \mathbb{C})$, alors :

$$\lim_{n \to +\infty} \frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a + k \frac{b-a}{n}\right) = \int_a^b f$$

et

$$\lim_{n \to +\infty} \frac{b-a}{n} \sum_{k=1}^{n} f\left(a + k \frac{b-a}{n}\right) = \int_{a}^{b} f$$

Théorème 8 : Inégalité de Taylor-Lagrange

Soit $n \in \mathbb{N}$, soit $f \in \mathcal{C}^{n+1}(I, \mathbb{C})$, soit $a \in I$.

On suppose qu'il existe $M \in \mathbb{R}^+$ tel que :

$$\forall t \in I, |f^{n+1}(t)| \le M.$$

On a:

$$\forall x \in I, \left| f(x) - \sum_{k=0}^{n} \frac{f^k(a)}{k!} (x - a)^k \right| \le M \frac{|x - a|^{n+1}}{(n+1)!}.$$