Exercices du chapitre 8 : Equations différentielles

I Equations différentielles linéaire du premier ordre

Exercice 1:

Résoudre les équations suivantes sur \mathbb{R}^{+*} :

1.

$$y' + \frac{1}{x}y = 0$$

2.

$$y' - \frac{2}{x^3}y = 0$$

Exercice 2:

Résoudre l'équation différentielle :

$$2y' - y = \sin x.$$

Exercice 3:

Résoudre les équations différentielles suivantes, en cherchant d'abord une solution évidente :

- 1. $y' 2xy = \sinh x 2x \cosh x$,
- 2. $y' + y \sin x = \sin 2x$.

Exercice 4:

Soit l'équation différentielle :

$$(x+1)y' + xy = x^2 - x + 1.$$

- 1. Trouver une solution polynomiale.
- 2. En déduire l'ensemble des solutions sur $]-1,+\infty[$.
- 3. Déterminer la solution vérifiant y(1) = 1.

Exercice 5: (**)

Trouver toutes les applications $f: \mathbb{R} \to \mathbb{R}$ dérivables telles que :

$$\forall x \in \mathbb{R}, f'(x)f(-x) = 1.$$

Exercice 6: (*)

Déterminer les applications $f : \mathbb{R} \to \mathbb{R}$ telles que les deux équations différentielles y' - y = 1 - x et xy' - y = f(x) aient au moins une solution commune $y : \mathbb{R} \to \mathbb{R}$.

Exercice 7: $(\star \star \star)$

Trouver toutes les applications $f : \mathbb{R} \to \mathbb{R}$ dérivables en 0 et telles que :

 $\forall (x, y) \in \mathbb{R}^2, f(x + y) = e^x f(y) + e^y f(x).$

Exercice 8:

Résoudre:

$$y' + y = 2e^x + 4\sin x + 3\cos x$$

Exercice 9: (\star)

Résoudre les équations différentielles suivantes :

- 1. $x' + x = \sin t + 3\sin 2t$,
- 2. $(1+t^2)x' + x = Arctan t$.

Exercice 10:

Résoudre les équations différentielles suivantes :

- a. $y' + 2y = x^2$
- b. $y' y = (x+1)e^x$

Exercice 11:

Résoudre les équations différentielles :

- 1. $y' xy = xe^{x^2/2} \operatorname{sur} \mathbb{R},$
- 2. x(x-1)y' + (2x-1)y = 1 sur]0,1[,
- 3. $xy' 2y = (x-1)(x+1)^3 \text{ sur }]0, +\infty[.$

Exercice 12: (\star)

Résoudre les équations différentielles suivantes :

- a. $(1-x)y' + y = \frac{x-1}{x} \text{ sur }]1, +\infty[$
- b. $y' + y = \frac{1}{1+e^x} \operatorname{sur} \mathbb{R}$

Exercice 13: $(\star\star)$

Résoudre l'équation différentielle suivante :

$$(x \ln x) y' - y = -\frac{1}{x} (\ln x + 1) \text{ sur }]1, +\infty[$$

II Équation différentielle linéaire du second ordre à coefficients constants

Résoudre les équations suivantes :

1.
$$y'' + 2y' - 3y = 0$$

2.
$$y'' + 2y' + y = 0$$

3.
$$y'' + 2y' + 4y = 0$$
 dans \mathbb{R}

4.
$$y'' + 2y' + 4y = 0$$
 dans \mathbb{C}

5.
$$y'' - y' + (1+i)y = 0$$

Exercice 15: $(\star\star)$

Déterminer l'ensemble des couples $(a, b) \in \mathbb{R}^2$ tels que toute solution sur $]0, +\infty[$ de y'' +ay' + by = 0 soit bornée.

Exercice 16: $(\star\star)$

Résoudre l'équation suivante sur]-1,1[:

$$(1 - x^2)y'' - xy' + y = 0.$$

On pourra poser $x = \sin t$.

Exercice 17: $(\star\star)$

Soit $m \in \mathbb{R}^*$, on considère l'équation différentielle suivante :

(E):
$$(1+x^2)^2 y'' + 2x(1+x^2) y' + m^2 y = 0$$
.

Résoudre (*E*) sur \mathbb{R} . On pourra poser $x = \tan t$.

Préciser les solutions dans le cas particulier où m = 2.

Exercice 18: $(\star\star)$

Résoudre l'équation suivante sur \mathbb{R}^{+*} :

$$xy'' + 2(x+1)y' + (x+2)y = 0$$

On pourra poser z = xy.

Exercice 19: (*)

Déterminer l'ensemble des fonctions f dérivables sur $\mathbb R$ telles que :

$$\forall x \in \mathbb{R}, \, f'(x) = f(-x).$$

Exercice 20: $(\star\star)$

Soit $\alpha \in \mathbb{R}$, trouver toutes les applications $f : \mathbb{R} \to \mathbb{R}$ dérivables sur \mathbb{R} , telles que :

$$\forall x \in \mathbb{R}, f'(x) = f(\alpha - x).$$

Exercice 21:

Résoudre les équations suivantes :

1.
$$y'' - 4y' + 4y = e^x$$
,

2.
$$y'' - 4y' + 4y = e^{2x}$$
,

2.
$$y'' - 4y' + 4y = e^{2x}$$
,
3. $y'' + y = \frac{1}{4}\cos 3x$,

4.
$$y'' + y = \frac{3}{4}\cos x$$

Exercice 22: $(\star\star)$

On considère l'équation différentielle suivante :

(E):
$$x^2y'' + 4xy' + (2-x^2)y = 1$$
.

Résoudre (*E*) sur]0, $+\infty$ [. On pourra poser $z = x^2y$.

Exercice 23: $(\star\star)$

On considère l'équation différentielle suivante :

(E):
$$x^2y'' + 3xy' + y = (x+1)^2$$
.

Résoudre (*E*) sur $]0, +\infty[$. On pourra poser $x = e^t$.

Exercice 24:

Résoudre:

$$y'' + y = \cos^3 x.$$

Exercice 25: (\star)

Résoudre l'équation différentielle suivante :

$$y'' - 2y' + y = 2\operatorname{sh} x.$$

Exercice 26: $(\star\star)$

Résoudre l'équation différentielle suivante, avec $\lambda \in \mathbb{R}$:

$$y'' - 2y' + \lambda y = e^{2x} + e^x \sin x.$$