Indications du chapitre 3: Inégalités et fonctions d'une variable réelle

I Inégalités dans \mathbb{R}

Exercice 1: (*)

Simplifier $\frac{a}{b} + \frac{b}{a} - 2$.

Etudier le domaine de définition de l'inéquation, mettre une racine carrée dans chaque membre puis élever au carré.

Solution: L'ensemble des solutions est $[4, +\infty[$.

Exercice 3: (*)

- 1. Utiliser $|a| = |b| \iff a = \pm b$. *Solution*: L'ensemble des solutions est $\{3, \frac{5}{2}\}$.
- 2. Utiliser $|x| \le a \iff -a \le x \le a$ et faire un tableau de signe. *Solution*: L'ensemble des solutions est $]-\infty,-7]\cup[-\frac{5}{3},+\infty[$.

Exercice 4: (*)

Raisonner par disjonction de cas.

Solution : $\left\{-\frac{3}{4}, \frac{3}{2}\right\}$

Exercice 5: $(\star\star)$

Faire apparaître des identités remarquables et des valeurs absolues. *Solution* :[4, 9]

Exercice 6: (*)

Elever au carré l'inégalité à prouver.

Exercice 7: $(\star\star)$

- 1. Elever au carré les quantités à comparer.
- 2. Utiliser l'inégalité triangulaire et la première question.

Exercice 8: $(\star\star)$

Remarquer que $x = \frac{(x+y) + (x-y)}{2}$ et $y = \frac{(x+y) - (x-y)}{2}$. Remarquer que xy - 1 = (1-x)(1-y) + (x-1) + (y-1).

Exercice 9:

Utiliser l'inégalité triangulaire, remarquer que : $\forall k \in \mathbb{N}^* \ \forall x \in \mathbb{R}, \left| \frac{(-1)^n \sin(nx)}{n+k^2} \right| \leq \frac{1}{n}$.

Exercice 10: $(\star\star)$

Utiliser l'inégalité triangulaire, remarquer que : $\forall k \in \mathbb{N}^*$, $0 \le \sin \frac{\pi}{6k} \le \frac{1}{2}$ et utiliser la somme d'une progression géométrique.

Exercice 11: L'équation est équivalente à $2 \le \sqrt{x^2 + 1} < 3$. Solution : $] - 2\sqrt{2}, -\sqrt{3}] \cup [\sqrt{3}, 2\sqrt{2}[$

Exercice 12: (\star)

Raisonner par analyse-synthèse.

Pour la partie analyse, chercher à encadrer x.

Solution : $[0, 1] \cup [2, 6]$

Exercice 13: (\star)

Faire différents cas selon la position de x par rapport $\lfloor x \rfloor + \frac{1}{2}$ et de y par rapport à $\lfloor y \rfloor + \frac{1}{2}$.

Exercice 14: $(\star \star)$

Raisonner par double inégalité pour prouver la première égalité. On pourra partir de $\lfloor x \rfloor \leq x$ et de $\lfloor nx \rfloor \le nx$ puis utiliser la croissance de la fonction partie entière

Appliquer le résultat précédent en remplaçant x par $x + \frac{k}{n}$ puis effectuer la division euclidienne de |nx| par n: |nx| = nq + r avec $r \in [0, n-1]$ et $q \in \mathbb{Z}$.

Généralités sur les fonctions

Exercice 15: (\star)

- 1. *Solution*: f est définie sur $\mathbb{R} \setminus \{-1,0,1\}$ et est impaire.
- 2. *Solution*: f est définie sur $]1,+\infty[$ et n'est ni paire ni impaire.
- 3. *Solution* : f est définie sur \mathbb{R}^* et est impaire.

Exercice 16:

Utiliser les définitions.

Exercice 17:

1. *Solution* : $\mathbb{R} \setminus \{2k\pi, k \in \mathbb{Z}\}$

2. Montrer que f est 2π -périodique et impaire. Solution : On effectue une symétrie par rapport à l'origine puis des translations de vecteur $(2k\pi,0)$, $k \in \mathbb{Z}$.

Exercice 18: (\star) On peut montrer que f et g sont T_1T_2 périodique puis que f+g est T_1T_2 périodique.

Exercice 19: (★★)

Raisonner par l'absurde pour montrer une des deux implications.

Exercice 20: $(\star\star)$

On raisonne par l'absurde. Supponsons que f ne soit pas strictement décroissante (et pas que f est croissante), c'est-à-dire, en écrivant la négation de la proposition logique, qu'il existe $x_1, x_2 \in \mathbb{R}$ tels que $x_1 < x_2$ et $f(x_1) \le f(x_2)$.

En utilisant les deux hypothèses, montrer que $f \circ f \circ f(x_1) \le f \circ f \circ f(x_2)$ et que $f \circ f \circ f(x_1) > f \circ f \circ f(x_2)$ ce qui donne une contradiction.

Exercice 21:

Ecrire la négation de f est majorée.

III Bijectivité

Exercice 22:

Montrer que f est strictement monotone.

Solution: f est bijective de $]0, +\infty[$ vers $]5, +\infty[$.

Exercice 23: (★)

Résoudre l'équation f(x) = y.

Solution: $f^{-1}: \mathbb{R} \setminus \{1\} \to \mathbb{R} \setminus \{2\}$ $x \mapsto \frac{2x+1}{x-1}$

Exercice 24: (\star)

- 1. Exhiber un contre-exemple. *Solution : f n'est pas bijective.*
- 2. Résoudre l'équation g(x) = y où $x \in \mathbb{R}^+$ et $y \in [-1,1[$. $g^{-1}: [-1,1[\rightarrow \mathbb{R}^+$

Solution:
$$g^{-1}: [-1,1[\rightarrow \mathbb{R}^+ \\ x \mapsto \sqrt{\frac{1+x}{1-x}}]$$

IV Dérivation

Exercice 25:

Solution: $\forall x \in \mathbb{R} \setminus \{1, 2\}, f_1'(x) = -\frac{x^2 - 2}{(x^2 - 3x + 2)^2}, \ \forall x \in]-\infty, 2[, f_2'(x) = \frac{4 - x}{2(2 - x)\sqrt{2 - x}} \ et \ \forall x \in \mathbb{R},$ $f_3(x) = \frac{\sqrt{x + \sqrt{x^2 + 1}}}{2\sqrt{x^2 + 1}}.$

Exercice 26: $Solution: f'(x) = -\frac{2(x-2)}{(x-1)^3}$

Exercice 27: (*) $Solution: f'(x) = \frac{1}{2\sqrt{(x-1)(2-x)^3}}.$

Exercice 28: (\star) Etudier le signe de f'. On peut comparer f(0) et f(2). Solution: f n'est pas décroissante sur son ensemble de définition.

Exercice 29: (\star) Etudier $x \mapsto 2x\sqrt{1-x^2}$.

Exercice 30: (*) Etudier $x \mapsto x^4 - x^2 - 2x - 2$.

Exercice 31:

- 1. Etudier les variations de f. Solution: $f'(t) = -\frac{1}{t^2} 2t$.
- 2. Montrer que f' ne s'annule pas et appliquer la formule de dérivation de la réciproque. Solution : g est dérivable sur $[0, +\infty[$ et $g'(t) = -\frac{g(t)^2}{2g(t)^3 + 1}$.

Exercice 32: (*)

- 1. Etudier la fonction f.
- 2. Etudier les points d'annulation de f'. Solution : f^{-1} est dérivable sur] $-\infty$, 1[.
- 3. Utiliser la formule de la dérivée de la réciproque et remarquer que f(1)=1-e. Solution : $(f^{-1})'(1-e)=-\frac{1}{3e}$

Exercice 33: (*) Solution: $\forall x \in \mathbb{R}^{+*}$, $f'(x) = -\frac{2}{3}x^{-5/3} + \frac{3}{2}x^{-5/2}$.