Programme de colles Semaine 16 du 29 janvier au 2 février

Cours:

Ch 13: Dérivabilité

I : Nombre dérivé, fonction dérivée

II : Propriétés des fonctions dérivables

III : Fonctions de classe \mathcal{C}^k

IV: Fonctions convexes

V : Fonctions complexes

Ch 14: Polynômes

I: L'ensemble $\mathbb{K}[X]$

II : Divisibilité et division euclidienne dans $\mathbb{K}[X]$

Questions de cours et exercices type :

Q₁: Dérivée de la composée (ch 13, proposition 5)

Q₂: Théorème de Rolle *(ch 13, théorème 3)*

Q₃: Degré du produit et de la composée de deux polynômes *(ch 14, proposition 8, points 2 et 5)*

 T_1 : Ch 13, exemple 4

Soit $f: [-1,1] \to \mathbb{R}$ de classe \mathcal{C}^1 telle que f(-1) = f(0) = f(1) = 0. On pose :

$$g: [-1,1] \to \mathbb{R}$$
$$x \mapsto 2x^4 + x + f(x).$$

Montrer qu'il existe $c \in]-1,1[$ tel que g'(c)=0.

T₂: *Ch* 14, *exemple* 3

Déterminer l'ensemble des $P \in \mathbb{K}[X]$ tels que :

$$P(X+1) - P(X) = X.$$

Programme de colles Semaine 16 du 29 janvier au 2 février

Cours:

Ch 13: Dérivabilité

I : Nombre dérivé, fonction dérivée

II : Propriétés des fonctions dérivables

III : Fonctions de classe \mathcal{C}^k

IV: Fonctions convexes

V : Fonctions complexes

Ch 14: Polynômes

I: L'ensemble $\mathbb{K}[X]$

II : Divisibilité et division euclidienne dans $\mathbb{K}[X]$

Questions de cours et exercices type :

Q₁: Dérivée de la composée (ch 13, proposition 5)

Q₂: Théorème de Rolle *(ch 13, théorème 3)*

Q₃: Degré du produit et de la composée de deux polynômes *(ch 14, proposition 8, points 2 et 5)*

 T_1 : Ch 13, exemple 4

Soit $f: [-1,1] \to \mathbb{R}$ de classe \mathcal{C}^1 telle que f(-1) = f(0) = f(1) = 0. On pose :

$$g: [-1,1] \to \mathbb{R}$$
$$x \mapsto 2x^4 + x + f(x).$$

Montrer qu'il existe $c \in]-1,1[$ tel que g'(c)=0.

T₂: *Ch* 14, *exemple* 3

Déterminer l'ensemble des $P \in \mathbb{K}[X]$ tels que :

$$P(X+1) - P(X) = X.$$