Programme de colles Semaine 2 du 25 septembre au 29 septembre

Cours:

Ch 1 : Rudiments de logique et d'arithmétique

Ch 2 : Compléments de calcul algébrique et trigonométrie

I:Sommes

II: Produits

III: Sommes doubles

IV: Coefficients binomiaux et formule du binôme de Newton

V : Systèmes linéaires

Questions de cours et exercices type :

 $\mathbf{Q_1}$: Tout entier supérieur ou égal à 2 admet au moins un diviseur premier. (ch 1, proposition 19)

Q₂: Formule du binôme de Newton. *(ch 2, théorème 1)*

 T_1 : Ch 1, exemple 19

Montrer que $\sqrt{2}$ est irrationnel.

T₂: *Ch 1, exemple 27*

Soit $f \in \mathcal{F}(\mathbb{R}, \mathbb{R})$, montrons que :

$$\exists ! (g,h) \in \mathcal{P}(\mathbb{R}) \times \mathcal{I}(\mathbb{R}), \, f = g + h,$$

où $\mathcal{P}(\mathbb{R})$ désigne l'ensemble des fonctions paires sur \mathbb{R} , $\mathcal{I}(\mathbb{R})$ désigne l'ensemble des fonctions impaires sur \mathbb{R} et $(g,h) \in \mathcal{P}(\mathbb{R}) \times \mathcal{I}(\mathbb{R})$ signifie que $g \in \mathcal{P}(\mathbb{R})$ et $h \in \mathcal{I}(\mathbb{R})$.

T₃: *Ch 2, exemple 16*

Soit $n \in \mathbb{N}^*$. Calculer $\sum_{k=0}^{n} k \binom{n}{k}$. On proposera deux méthodes.

Programme de colles Semaine 2 du 25 septembre au 29 septembre

Cours:

Ch 1 : Rudiments de logique et d'arithmétique

Ch 2 : Compléments de calcul algébrique et trigonométrie

I:Sommes

II: Produits

III: Sommes doubles

IV: Coefficients binomiaux et formule du binôme de Newton

V : Systèmes linéaires

Questions de cours et exercices type :

 $\mathbf{Q_1}$: Tout entier supérieur ou égal à 2 admet au moins un diviseur premier. (ch 1, proposition 19)

Q₂: Formule du binôme de Newton. *(ch 2, théorème 1)*

 T_1 : Ch 1, exemple 19

Montrer que $\sqrt{2}$ est irrationnel.

T₂: *Ch 1, exemple 27*

Soit $f \in \mathcal{F}(\mathbb{R}, \mathbb{R})$, montrons que :

$$\exists ! (g,h) \in \mathcal{P}(\mathbb{R}) \times \mathcal{I}(\mathbb{R}), \, f = g + h,$$

où $\mathcal{P}(\mathbb{R})$ désigne l'ensemble des fonctions paires sur \mathbb{R} , $\mathcal{I}(\mathbb{R})$ désigne l'ensemble des fonctions impaires sur \mathbb{R} et $(g,h) \in \mathcal{P}(\mathbb{R}) \times \mathcal{I}(\mathbb{R})$ signifie que $g \in \mathcal{P}(\mathbb{R})$ et $h \in \mathcal{I}(\mathbb{R})$.

T₃: *Ch 2, exemple 16*

Soit $n \in \mathbb{N}^*$. Calculer $\sum_{k=0}^{n} k \binom{n}{k}$. On proposera deux méthodes.