Devoir à la maison nº 7:

A rendre pour le : lundi 3 février

Les résultats doivent être encadrés.

Si vous ne souhaitez pas être noté, merci de le préciser sur votre copie.

Problème 1:

Questions préliminaires :

1. Soient $a, b, c \in \mathbb{R}$ tels que $a \neq 0$. Montrer que si $x \mapsto ax^2 + bx + c$ est de signe constant sur \mathbb{R} , alors:

$$b^2 - 4ac \le 0.$$

2. Soient $a, b \in \mathbb{R}$ tels que a < b et $f \in C^2([a, b])$. On pose :

$$A = \frac{2}{(b-a)^2} (f(b) - f(a) - (b-a)f'(a)),$$

et:

$$\begin{array}{cccc} g: & [a,b] & \to & \mathbb{R} \\ & x & \mapsto & f(b) - f(x) - (b-x)f'(x) - \frac{(b-x)^2}{2}A. \end{array}$$

- (a) Montrer que $g \in C^1([a, b])$ et que g(a) = g(b).
- (b) En déduire qu'il existe $c \in]a, b[$ tel que :

$$f(b) = f(a) + (b-a)f'(a) + \frac{(b-a)^2}{2}f''(c).$$

Ce résultat est appelé formule de Taylor-Lagrange.

On admettra que cette formule reste vraie si $b \le a$.

Résultat général:

Soit f une fonction positive, de classe C^2 sur \mathbb{R} telle que f'' soit bornée sur \mathbb{R} .

3. En appliquant la formule de Taylor-Lagrange à la fonction f, montrer que :

$$\forall x, \lambda \in \mathbb{R}, f(x) + \lambda f'(x) + \frac{\lambda^2}{2} \sup_{t \in \mathbb{R}} |f''(t)| \ge 0.$$

4. (a) Si $\sup_{t \in \mathbb{R}} |f''(t)| = 0$, montrer que:

$$\forall x \in \mathbb{R}, |f'(x)| \le \sqrt{2f(x).\sup_{t \in \mathbb{R}} |f''(t)|}.$$

(b) Si $\sup_{t \in \mathbb{R}} |f''(t)| \neq 0$, en remarquant que, pour tout $x \in \mathbb{R}$, $\lambda \mapsto f(x) + \lambda f'(x) + \frac{\lambda^2}{2} \sup_{t \in \mathbb{R}} |f''(t)|$ est une fonction polynomiale du second degré , montrer que :

$$\forall x \in \mathbb{R}, |f'(x)| \le \sqrt{2f(x).\sup_{t \in \mathbb{R}} |f''(t)|}.$$

Application:

On pose $g = \sqrt{f}$.

- 5. Montrer que g est continue sur \mathbb{R} et dérivable en tout point x où $f(x) \neq 0$.
- 6. Soit $x_0 \in \mathbb{R}$ tel que $f(x_0) = 0$.
 - (a) Déduire de 4. que $f'(x_0) = 0$.
 - (b) Montrer que $f''(x_0) \ge 0$.
 - (c) Montrer que pour tout $x \in \mathbb{R} \setminus \{x_0\}$, il existe c compris entre x_0 et x tel que :

$$f(x) = \frac{1}{2}(x - x_0)^2 f''(c).$$

En déduire que si $f''(x_0) > 0$ alors g n'est pas dérivable en x_0 .

- 7. Soit $x_0 \in \mathbb{R}$ tel que $f(x_0) = f'(x_0) = f''(x_0) = 0$, soit r > 0. On pose : $I_r = [x_0 r, x_0 + r]$ et $I_{2r} = [x_0 2r, x_0 + 2r]$. On suppose que $\sup_{t \in I_{2r}} |f''(t)| \neq 0$.
 - (a) Montrer que:

$$\forall x \in I_r, |f'(x)| \le r \sup_{t \in I_{2r}} |f''(t)|.$$

(b) Soit $x \in I_r$, montrer que si $2f(x) \sup_{t \in I_{2r}} |f''(t)| < f'(x)^2$, alors le trinôme en λ :

$$\tau(\lambda) = f(x) + \lambda f'(x) + \frac{\lambda^2}{2} \sup_{t \in I_{2r}} |f''(t)|,$$

admet deux racines distinctes λ_1 et λ_2 telles que $\mu = \frac{\lambda_1 + \lambda_2}{2}$ appartienne à l'intervalle [-r, r] et que :

$$f(x+\mu) \le \tau(\mu) < 0.$$

En déduire que, pour tout $x \in I_r$,

$$|f'(x)| \le \sqrt{2f(x) \cdot \sup_{t \in I_{2r}} |f''(t)|}.$$

8. Déduire des questions précédentes que, si f est une fonction positive de classe C^2 sur $\mathbb R$ telle que f'' s'annule en tous les zéros de f (s'il en existe), alors $g = \sqrt{f}$ est de classe C^1 sur $\mathbb R$.

Problème 2:

On pose:

$$\forall n \in \mathbb{N}, S_n = \sum_{k=0}^n \frac{X^k}{k!}.$$

Dans ce problème, on confondra un polynôme et la fonction polynomiale qui lui est associée et on admettra que :

$$\forall x \in \mathbb{R}, \lim_{n \to +\infty} \sum_{k=0}^{n} \frac{x^k}{k!} = e^x.$$

1. (a) Montrer que:

$$\forall n \in \mathbb{N}^*$$
, $S'_n = S_{n-1}$.

(b) Soit $n \in \mathbb{N}$, montrer que le polynôme S_n n'a pas de racine réelle si n est pair et a une unique racine réelle si n est impair. (On pourra faire une démonstration par récurrence.)

On pose:

$$\forall n \in \mathbb{N}, P_n = S_{2n+1} = \sum_{k=0}^{2n+1} \frac{X^k}{k!}.$$

- 2. Pour tout $n \in \mathbb{N}$, on note α_n l'unique racine réelle de P_n .
 - (a) Soit $n \in \mathbb{N}$, montrer que α_n est racine simple de P_n .
 - (b) i. Montrer que :

$$\forall n \in \mathbb{N}, P_n = \sum_{k=0}^{n} \frac{X^{2k}}{(2k)!} \left(1 + \frac{X}{2k+1} \right).$$

ii. En déduire que :

$$\forall n \in \mathbb{N}, -(2n+1) \le \alpha_n \le -1.$$

(c) i. Montrer que:

$$\forall n \in \mathbb{N}, P_{n+1}(\alpha_n) = \frac{\alpha_n^{2n+2}}{(2n+2)!} \left(1 + \frac{\alpha_n}{2n+3} \right).$$

- ii. En déduire que la suite (α_n) est décroissante.
- (d) On suppose, dans cette question, que la suite (α_n) est convergente de limite $l \in \mathbb{R}$.
 - i. Montrer que:

$$\forall n \in \mathbb{N}, |P_n(\alpha_n) - P_n(l)| \le e^{-l}(\alpha_n - l).$$

ii. En déduire que :

$$\lim_{n \to +\infty} P_n(\alpha_n) = e^l.$$

- iii. Aboutir à une contradiction.
- (e) En déduire la nature et la limite de la suite (α_n) .