Problème 1:

- 1. (a)
 - (b) Il suffit d'exhiber une matrice qui convient.
 - (c) Reconnaître une suite géométrique.
- 2. (a) On prouve en même temps l'inversibilité et le calcul de l'inverse.
 - (b) C'est un résultat du cours, il n'est pas utile de faire la récurrence.
 - (c) On calcule.
- 3. (a)
 - (b) Appliquer la formule du binôme de Newton.
 - (c) On calcule.
- 4. (a) Utiliser 1.c.
 - (b) Utiliser une croissance comparée.

Problème 2:

- 1. Raisonner par équivalences.
- 2. En appliquant (E) à des valeurs bien choisies, montrer que f(0) = 1 ou -1 ou 0. Montrer que f(0) = 0 est en contradiction avec f non constante.

3.

- 4. (a) Montrer par récurrence que : $\forall n \in \mathbb{N}, f(\frac{x}{2^n}) = 0$ et utiliser un passage à la limite.
 - (b) Utiliser le théorème des valeurs intermédiaires.
- 5. Appliquer (*E*) à des valeurs bien choisies.
- 6. (a)
 - (b)
- 7. (a) En appliquant (E) à des valeurs bien choisies, montrer que : $\forall n \in \mathbb{N}, \varphi(n+2) + \varphi(n) = 2(\varphi(n+1) + \varphi(1))$.
 - Raisonner par récurrence double pour $n \in \mathbb{N}$.
 - Utiliser la parité pour $n \in \mathbb{Z}^{-*}$.
 - (b) Raisonner par récurrence double en utilisant la même idée qu'à la question précédente.
 - (c) Utiliser les deux questions précédentes.
 - (d) Ecrire *x* comme la limite d'une suite de rationnels.
- 8. Raisonner par analyse-synthèse.