Programme de colles Semaine 20 du 10 mars au 14 mars

Cours:

• Chapitre 16: Analyse asymptotique

I Relations de comparaison : cas des fonctions

II Développements limités

III Applications des développements limités

IV Relations de comparaison : cas des suites

V Problèmes d'analyse asymptotique

Questions de cours et exercices type :

Q₁: Primitivation d'un développement limité (ch 16, proposition 22)

Q₂: Formule de Taylor-Young (ch 16, proposition 19)

 T_1 : Ch 16, exemple 9

Calculer le développement limité de : $x \mapsto \int_x^{x^2} \frac{1}{\sqrt{1+t^2}} dt$ à l'ordre 4 au voisinage de 0.

T₂: *Ch* 16, *exemple* 18

Montrer que sh est bijective de $\mathbb R$ vers $\mathbb R$ et déterminer le développement limité de sh $^{-1}$ en 0 à l'ordre 4.

T₃: *Ch* 16, exemple 20

- (a) Soit $n \in \mathbb{N}$, montrer que l'équation $x + \sqrt[3]{x} = n$ admet une unique solution $x_n \in \mathbb{R}$.
- (b) Montrer que : $x_n = n + o(n)$.
- (c) En déduire : $x_n = n \sqrt[3]{n} + o(\sqrt[3]{n})$.
- (d) En déduire : $x_n = n \sqrt[3]{n} + \frac{1}{3\sqrt[3]{n}} + o(+\frac{1}{\sqrt[3]{n}})$.

Programme de colles Semaine 20 du 10 mars au 14 mars

Cours:

• Chapitre 16: Analyse asymptotique

I Relations de comparaison : cas des fonctions

II Développements limités

III Applications des développements limités

IV Relations de comparaison : cas des suites

V Problèmes d'analyse asymptotique

Questions de cours et exercices type :

Q₁: Primitivation d'un développement limité (ch 16, proposition 22)

Q₂: Formule de Taylor-Young (ch 16, proposition 19)

 T_1 : Ch 16, exemple 9

Calculer le développement limité de : $x \mapsto \int_x^{x^2} \frac{1}{\sqrt{1+t^2}} dt$ à l'ordre 4 au voisinage de 0.

T₂: *Ch* 16, *exemple* 18

Montrer que sh est bijective de $\mathbb R$ vers $\mathbb R$ et déterminer le développement limité de sh $^{-1}$ en 0 à l'ordre 4.

T₃: *Ch* 16, exemple 20

- (a) Soit $n \in \mathbb{N}$, montrer que l'équation $x + \sqrt[3]{x} = n$ admet une unique solution $x_n \in \mathbb{R}$.
- (b) Montrer que : $x_n = n + o(n)$.
- (c) En déduire : $x_n = n \sqrt[3]{n} + o(\sqrt[3]{n})$.
- (d) En déduire : $x_n = n \sqrt[3]{n} + \frac{1}{3\sqrt[3]{n}} + o(+\frac{1}{\sqrt[3]{n}})$.