Programme de colles Semaine 5 du 14 octobre au 18 octobre

Cours:

• Chapitre 5 : Inégalités

I Inégalités dans ℝ

II Valeur absolue

III Majorations, minorations

IV Partie entière

• Chapitre 6 : Calcul algébrique

I Sommes

II Produits

III Sommes doubles

IV Coefficients binomiaux et formule du binôme de Newton

• Chapitre 7: Nombres complexes

I Ensemble des nombres complexes

II Module

III Nombres complexes de module 1 et trigonométrie

Questions de cours et exercices type :

Q₁: Formule du binôme de Newton *(ch 6, théorème 1)*

Q₂: Inégalité triangulaire (sans le cas d'égalité) et deuxième inégalité triangulaire (*ch* 7, *proposition 11 et corollaire 3*)

 T_1 : Ch 6, exemple 15

Soit $n \in \mathbb{N}^*$, calculer : $\sum_{i,j \in [\![1,n]\!]} \min(i,j).$

T₂: *Ch* 6, *exemple* 17

Soit $n \in \mathbb{N}^*$. Calculer $\sum_{j=0}^n \sum_{i=j}^n \binom{i}{j}$.

 T_3 : Ch 7, exemple 12

Soit $n \in \mathbb{N}$, soit $t \in \mathbb{R}$. Calculer:

$$\sum_{k=0}^{n} \cos(kt) \text{ et } \sum_{k=0}^{n} \sin(kt).$$

Programme de colles Semaine 5 du 14 octobre au 18 octobre

Cours:

• Chapitre 5 : Inégalités

I Inégalités dans ℝ

II Valeur absolue

III Majorations, minorations

IV Partie entière

• Chapitre 6 : Calcul algébrique

I Sommes

II Produits

III Sommes doubles

IV Coefficients binomiaux et formule du binôme de Newton

• Chapitre 7: Nombres complexes

I Ensemble des nombres complexes

II Module

III Nombres complexes de module 1 et trigonométrie

Questions de cours et exercices type :

Q₁: Formule du binôme de Newton *(ch 6, théorème 1)*

Q₂: Inégalité triangulaire (sans le cas d'égalité) et deuxième inégalité triangulaire (*ch* 7, *proposition 11 et corollaire 3*)

 T_1 : Ch 6, exemple 15

Soit $n \in \mathbb{N}^*$, calculer : $\sum_{i,j \in [\![1,n]\!]} \min(i,j).$

T₂: *Ch* 6, *exemple* 17

Soit $n \in \mathbb{N}^*$. Calculer $\sum_{j=0}^n \sum_{i=j}^n \binom{i}{j}$.

 T_3 : Ch 7, exemple 12

Soit $n \in \mathbb{N}$, soit $t \in \mathbb{R}$. Calculer:

$$\sum_{k=0}^{n} \cos(kt) \text{ et } \sum_{k=0}^{n} \sin(kt).$$