Devoir à la maison nº 2:

A rendre pour le : lundi 6 octobre

Les résultats doivent être encadrés.

Si vous ne souhaitez pas être noté, merci de le préciser sur votre copie.

Exercice 1:

Soient $a, b \in \mathbb{N}$. On suppose que $b|a^2 + 1$. Montrer que :

$$b|a^4+1 \Leftrightarrow b|2$$
.

Exercice 2:

Montrer que:

$$\forall x \in \mathbb{R}^+, \lfloor \sqrt{x} \rfloor = \left| \sqrt{\lfloor x \rfloor} \right|.$$

Problème 1:

Dans ce problème, on s'intéresse à la fonction suivante :

$$\begin{array}{cccc} f: &]-\pi,\pi[& \to & \mathbb{R} \\ & x & \mapsto & \frac{2\cos x - 6\sin x + 8}{1 + \cos x}. \end{array}$$

1. (a) Résoudre l'équation d'inconnue $x \in \mathbb{R}$:

$$\sin x - \cos x = 1.$$

(b) Résoudre l'équation d'inconnue $x \in \mathbb{R}$:

$$6\sin x - 2\cos x = 8.$$

- 2. (a) Calculer la dérivée de f.
 - (b) Calculer les limites en $(-\pi)^+$ et en π^- de f.
 - (c) Étudier les variations de f.
 - (d) Montrer que f admet un minimum et calculer sa valeur.
 - (e) Tracer f.
- 3. (a) Montrer que f est bijective de $\left[\frac{\pi}{2}, \pi\right[$ vers un intervalle I que l'on précisera. Dans toute la suite, on notera f^{-1} la bijection réciproque de $f: \left[\frac{\pi}{2}, \pi\right] \to I$.
 - (b) Calculer $f^{-1}(2)$.
 - (c) Étudier la dérivabilité de f^{-1} .
 - (d) Étudier les variations de f^{-1} .
- 4. On pose:

$$g:]-\pi,\pi[\rightarrow \mathbb{R}$$

$$x \mapsto \tan \frac{x}{2}.$$

- (a) Montrer que g est bijective et exprimer g^{-1} en fonction de Arctan.
- (b) Montrer que g^{-1} est dérivable sur \mathbb{R} et calculer sa dérivée.
- 5. On pose:

$$h: [1, +\infty[\rightarrow \mathbb{R} \\ x \mapsto 3x^2 - 6x + 5.$$

- (a) Montrer que h est bijective de $[1,+\infty[$ vers un intervalle J que l'on précisera. On notera h^{-1} la bijection réciproque de $h:[1,+\infty[\to J.$
- (b) Calculer h^{-1} .
- 6. (a) Soit $x \in]-\pi, \pi[$. On pose $t = \tan \frac{x}{2}$. Montrer que :

$$\cos x = \frac{1 - t^2}{1 + t^2}$$
 et $\sin x = \frac{2t}{1 + t^2}$.

- (b) Montrer que : $f = h \circ g$.
- (c) En déduire f^{-1} en fonction Arctan.
- (d) Calculer, lorsqu'elle existe, la dérivée de f^{-1} .