Devoir à la maison nº 3:

A rendre pour le : lundi 3 novembre

Les résultats doivent être encadrés.

Si vous ne souhaitez pas être noté, merci de le préciser sur votre copie.

Problème 1:

Soient $n, p \in \mathbb{N}$ tels que $n \ge p$. On pose :

$$S_{n,p} = \sum_{k=0}^{n} (-1)^k \binom{n}{k} k^p.$$

- 1. (a) Calculer $S_{0,0}$.
 - (b) Soit $n \in \mathbb{N}^*$, calculer $S_{n,0}$.

Dans toute la suite du problème, on suppose que $n \neq 0$

2. On pose:

$$\forall x \in \mathbb{R}, f(x) = \sum_{k=0}^{n} (-1)^k \binom{n}{k} x^k.$$

- (a) Soit $x \in \mathbb{R}$, simplifier f(x).
- (b) Donner deux expressions différentes de f'.
- (c) En déduire la valeur de $S_{n,1}$.
- 3. (a) Montrer que:

$$\forall k \in [1, n], k \binom{n}{k} = n \binom{n-1}{k-1}.$$

(b) Montrer que:

$$\forall \, k \in [\![1,n-1]\!], \left(\begin{array}{c} n-1 \\ k-1 \end{array}\right) = \left(\begin{array}{c} n \\ k \end{array}\right) - \left(\begin{array}{c} n-1 \\ k \end{array}\right).$$

(c) En déduire que :

$$S_{n,p+1} = n(S_{n,p} - S_{n-1,p}).$$

(d) Montrer que:

$$\forall p \in \mathbb{N}, \, \forall n > p, \, S_{n,p} = 0.$$

T.S.V.P.

Problème 2:

Soient $a, b \in \mathbb{C}^*$. On considère d'équation d'inconnue $z \in \mathbb{C}$:

$$z^2 - 2az + b = 0$$
. (E)

On note z_1 et z_2 les racines de (E).

L'objectif de ce problème est de déterminer une condition nécessaire et suffisante pour que $|z_1| = |z_2|$ et pour que $Arg(z_1) = |z_2|$ $Arg(z_2)$.

1. Questions préliminaires :

- (a) Donner, en fonction de a et b, les valeurs de $z_1 + z_2$ et de $z_1.z_2$.
- (b) Soit $z \in \mathbb{C}^*$, montrer que:

$$z + \frac{1}{z} \in \mathbb{R} \Leftrightarrow (z \in \mathbb{R} \text{ ou } |z| = 1).$$

(c) On considère la fonction:

$$f: \mathbb{R}^* \to \mathbb{R}$$
$$x \mapsto \left| x + \frac{1}{x} \right|$$

Montrer que f admet un minimum et le calculer.

2. Etude d'exemples:

Dans les cas particulier suivants, a-t-on $|z_1| = |z_2|$? Arg $(z_1) = \text{Arg}(z_2)$?

(a)
$$z^2 - 2(1+i)z + 4i = 0$$
,

(b)
$$z^2 - (2-i)z + 3 - i = 0$$

(b)
$$z^2 - (2-i)z + 3 - i = 0$$
,
(c) $z^2 - 3(1+2i)z - 6 + 8i = 0$.

3. Une condition nécessaire et suffisante pour que $z_1 = z_2$.

Déterminer une condition nécessaire et suffisante sur a et b pour que $z_1 = z_2$.

4. Une condition nécessaire et suffisante pour que $|z_1| = |z_2|$.

- (a) On suppose que $|z_1| = |z_2|$. i. Exprimer $\frac{a^2}{b}$ en fonction des arguments de z_1 et z_2 .
 - ii. Montrer que $\frac{a^2}{b} \in]0,1]$.
- (b) i. Montrer que si $\frac{a^2}{b} \in \mathbb{R}$, alors $\frac{z_1}{z_2} + \frac{z_2}{z_1} \in \mathbb{R}$. ii. Montrer que si $\frac{a^2}{b} \in]0,1]$, alors $|z_1| = |z_2|$.
- (c) Conclure.

5. Une condition nécessaire et suffisante pour que $Arg(z_1) = Arg(z_2)$.

(a) On suppose que

$$Arg(z_1) = Arg(z_2)$$

- i. Exprimer $\frac{b}{a^2}$ en fonction des modules de z_1 et z_2 .
- ii. Montrer que $\frac{b}{a^2} \in]0,1]$. (b) Montrer que si $\frac{b}{a^2} \in]0,1]$, alors $\text{Arg}(z_1) = \text{Arg}(z_2)$.
- (c) Conclure.

6. Vérification:

En utilisant les questions 4. et 5., retrouver les résultats des questions 2. et 3.