Indications

Exercice 1:

- Pour $b|2 \Rightarrow b|a^4 + 1$, il y a deux cas à traiter : un cas est évident et l'autre se traite avec des arguments de parité.
- Pour $b|a^4+1 \Rightarrow b|2$: remarquer que $2 = (a^4+1) (a^2+1)(a^2-1)$.

Exercice 2:

- Montrer que $|\sqrt{\lfloor x\rfloor}| \le |\sqrt{x}|$ en partant de $\lfloor x\rfloor \le x$.
- Montrer que $|\sqrt{x}| \le |\sqrt{|x|}|$ en partant de $|\sqrt{x}| \le \sqrt{x}$ et en élevant au carré.

Problème 1:

- 1. (a) Utiliser les formules de trigonométrie.
 - (b) Utiliser des inégalités pour montrer que l'équation n'a pas de solution.
- (a) C'est un calcul qui doit se simplifier.
 - (b) Il faut un argument de signe.
 - (c) Etudier le signe de la dérivée et pas seulement son annulation.
 - (d)
 - (e)
- 3. (a) Bien justifier la stricte monotonie de f.
 - (b) Chercher $x \in \left[\frac{\pi}{2}, \pi\right[\text{ tel que } f(x) = 2.$
 - (c) Il faut la non annulation de f'.
 - (d) Il est inutile de calculer $(f^{-1})'$ si on connaît bien son cours.
- 4. (a) Résoudre y = g(x) en n'oubliant pas l'argument du domaine.
 - (b) Utiliser la dérivée de Arctan.
- 5. (a) Méthode classique.
 - (b) Résoudre y = h(x) en se ramenant aux racines d'un polynôme du second degré.
- 6. (a) Calculer $\frac{1-t^2}{1+t^2}$ et $\frac{2t}{1+t^2}$ en utilisant des formules de trigonométrie. (b) Calculer $h\circ g(x)$ et simplifier f(x) avec la question précédente.

 - (c) Résoudre y = f(x).
 - (d) Dériver la valeur obtenue dans la question précédente.