Indications **DM 3**

Problème 1:

(a) Ne pas se tromper sur la valeur de 0° .

(a) Regrouper les deux puissances *k* et utiliser la formule du binôme de Newton.

- (b) Une expression avec une somme et une sans somme.
- (c) Evaluer en 1 et faire attention aux puissances de zéro.
- (a) Revenir à la définition des coefficients binomiaux.
 - (b) C'est une formule connue.
 - (c) Utiliser les deux questions précédentes en isolant le terme k = n.
 - (d) Raisonner par récurrence sur p et faire attention au : " $\forall n > p$ ".

Problème 2:

- (a) La formule est dans le cours.
 - (b) Il faut mettre $\frac{1}{2}$ sous forme algébrique.
 - (c) Se ramener à une étude de fonction sur \mathbb{R}^{+*} .
- (a) Le discriminant se met sous forme trigonométrique.
 - (b) Le discriminant est réel.
 - (c) Il faut calculer les racines du discriminant en passant par la forme algébrique.
- 3. La condition porte sur le discriminant.
- i. Remarquer que $a = \frac{1}{2}(z_1 + z_2)$, écrire z_1 et z_2 sous forme trigonométrique et utiliser une factorisation par i. Remarquer que a = ½(z₁ + z₂), ectrie z₁ et z₂ sous forme trigonometrique et danser de l'angle moitié. Simplifier ensuite avec b = z₁z₂.
 ii. Avec la question précédente, on trouve a²/b ∈ [0,1].
 i. Mettre z₁/z₂ + z₂/z₁ au même dénominateur et faire apparaître a² et b.
 ii. Appliquer la question 1.(b) à z = z₁/z₂ puis, dans le cas où z ∈ ℝ, appliquer la question 1.(c).

(c)

- i. Ecrire z_1 et z_2 sous forme trigonométrique et simplifier les exponentielles. ii. Simplifier $\frac{b}{a^2}-1$. 5. (a)

 - (b) Calculer le discriminant associé à (E) puis les valeurs de z_1 et z_2 . Remarquer que z_1 et z_2 diffèrent d'un facteur réel strictement positif.
 - (c)

6.