Programme de révisions : vacances d'automne

Un exercice de révisions

Un calcul de primitive ou d'intégrale

Travail du cours et/ou préparation des exercices

Préparation du DM

Soit $n \in \mathbb{N}$, calculer:

$$S = \sum_{i=0}^{n} \sum_{j=i}^{n} \binom{n}{j} \binom{j}{i} 2^{n+i-j}.$$

20 intion: 5"

Déterminer une primitive de $f: x \mapsto \frac{1}{(2x+1)^4}$ et de $g: x \mapsto \sqrt{e^{3x} + e^{2x}}$.

- Relire le cours du chapitre 7 parties I-II-III.
- Vérifier que les points suivants sont acquis :
 - ☐ Appliquer les inégalités triangulaires et l'inégalité sur les parties réelles et imaginaires → exercice
 - ☐ Factorisation par l'angle moitié → exercice 13
 - ☐ Utilisation des formules d'Euler et de Moivre → exemples 13 et 14
 - \Box Calculs de sommes \rightarrow exemples 12 et 15

Faire le problème 1.

Séance 2 :

Soit $\lambda \in \mathbb{R}$. Résoudre le système d'inconnues $x, y, z \in \mathbb{R}$:

$$\begin{cases}
4x + y + z &= \lambda x \\
x + 4y + z &= \lambda y \\
x + y + 4z &= \lambda z
\end{cases}$$

Solution : $\{x \in \mathbb{R} \mid \exists x \in$

Déterminer une primitive de $f: x \mapsto \operatorname{sh}(x) \ln(\operatorname{ch}(x))$ et calculer $I = \int_{1/2}^{1} \frac{1}{1 + 4(x - 1)^2} dx$.

- Relire le cours du chapitre 7 partie IV
- Vérifier que les points suivants sont acquis :
 - ☐ Mettre un nombre sous forme trigonométrique → exercice 23
 - \square Calcul de puissances \rightarrow exemple 17

Faire le problème 2, 1. Questions préliminaires

Séance 3:

U Déterminer le terme général de la suite définie par :

$$u_0 = 0$$
, $u_1 = 1$, $\forall n \in \mathbb{N}$, $u_{n+2} = 4u_{n+1} - 4u_n + 2$.

On pourra poser : $\forall n \in \mathbb{N}, v_n = u_n - 2$

$$2 + {}^{1+n}2 - {}^{1-n}2n$$
 $= n $: no in lo$$

Déterminer une primitive de $f: x \mapsto \frac{x}{(x^2+1)\ln(x^2+1)}$ et de $g: x \mapsto \frac{1}{\sqrt{e^{2x}-1}}$.

- Relire le cours du chapitre 7 partie V
- Vérifier que les points suivants sont acquis :
 - ☐ Calcul des racines carrées → exemple 18
 - ☐ Résolution d'une équation du second degré → exemples 19 et 20
 - ☐ Factoriser une équation en utilisant une racine évidente → exemple 21
 - ☐ Déterminer le terme général d'une suite récurrente linéaire d'ordre 2 → exemple 22

Faire le problème 2, 2. Etude d'exemples

Séance 4:

 \bigcup Soit $n \in \mathbb{N}$, calculer:

$$\left| (\sqrt{n} + \sqrt{n+1})^2 \right|$$
.

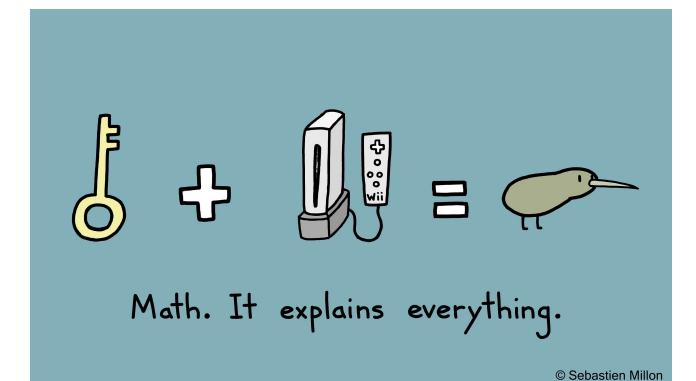
 $I + u_{\overline{b}}$: uomnos

Déterminer une primitive de $f: x \mapsto \frac{x}{\sqrt{1-x^2}} \cos(\sqrt{1-x^2})$ et calculer $I = \int_0^{\pi/4} (\tan(x) + \tan^3(x)) dx$.

- Relire le cours du chapitre 7 partie VI.
- Vérifier que les points suivants sont acquis :
 - \square Connaître les racines *n*-ièmes de l'unité \rightarrow exemple 23
 - □ Calcul de racines n-ièmes → exemples 25 et 26
- Préparer les exercices 38 et 40 du chapitre 7.

Faire le problème 2, 3. Une condition nécessaire et suffisante pour que $z_1 = z_2$ et 3. Une condition nécessaire et suffisante pour que $|z_1| = |z_2|$.

 $\text{Solution}: f'(x) = \frac{2}{1+x^2}, \ f(x) = 2 \text{Arctan} \ (x) + \frac{5\pi}{4} \ \text{si} \ x \in] - 1 - \sqrt{2}, -1 + \sqrt{2}[, \ f(x) = 2 \text{Arctan} \ (x) - \frac{3\pi}{4} \ \text{si} \ x \in] - 1 + \sqrt{2}, +\infty[$


Déterminer une primitive de $f: x \mapsto \frac{\tan\left(\frac{\pi}{2}\ln(x)\right)}{x}$ et calculer $I = \int_0^{\pi/2} \frac{\cos(x)}{(3\sin(x) + 2)^5} dx$.

- Relire le cours du chapitre 7 parties VII-VIII-IX.
- Vérifier que les points suivants sont acquis :
 - \square Résoudre une équation portant sur une exponentielle complexe \rightarrow exemple 27
 - \square Calcul de dérivées *n*-ièmes avec des fonctions cos ou sin \rightarrow exemple 28
 - ☐ Traduire algébriquement des conditions géométriques cos ou sin → exemple 29
- Préparer les exercices 46 et 49 du chapitre 7.

Faire le problème 2, 5. Une condition nécessaire et suffisante pour que $Arg(z_1) = Arg(z_2)$.

