Chapitre 3: Arithmétique

Division d'entiers

1.1 Multiples et diviseurs d'un entier

Définition 1

Soit $(a, b) \in \mathbb{Z}^2$. On dit que *a* divise *b* si et seulement si il existe $c \in \mathbb{Z}$ tel que b = ac. On note a|b. On dit aussi dans ce cas que *a* est un diviseur de *b* ou que *b* est un multiple de *a*.

Remarque : Soit $n \in \mathbb{Z}$.

- n est pair ssi 2|n,
- n est impair ssi 2|n-1.

Proposition 1

- 1. $\forall a \in \mathbb{Z}, a | a$
- 2. $\forall a, b \in \mathbb{Z}$, $(a|b \text{ et } b|a) \Leftrightarrow |a| = |b|$
- 3. $\forall a, b, c \in \mathbb{Z}$, $(a|b \text{ et } b|c) \Rightarrow a|c$

Preuve. Soient $a, b, c \in \mathbb{Z}$.

- 1. a = a.1 et $1 \in \mathbb{Z}$ donc $a \mid a$.
- 2. Supposons a|b et b|a. Alors, il existe $k_1, k_2 \in \mathbb{Z}$ tels que $b = k_1 a$ et $a = k_2 b$. Donc $a = k_1 k_2 a$.

Si a = 0, alors b = 0 donc |a| = |b|.

Sinon, $k_1 k_2 = 1$ donc $k_1 = k_2 = 1$ ou $k_1 = k_2 = -1$, donc $a = \pm b$, ainsi |a| = |b|.

Supposons |a| = |b| alors $a = \pm b$ et $b = \pm a$ donc a|b et b|a.

3. Supposons que a|b et b|c. Alors, il existe $k_1, k_2 \in \mathbb{Z}$ tels que $b=k_1a$ et $c=k_2b$. Ainsi, $c=(k_2k_1)a$ avec $k_1k_2 \in \mathbb{Z}$. Ainsi, a divise c.

Proposition 2

- 1. $\forall a, b, c \in \mathbb{Z}$, $(a|b \text{ et } a|c) \Rightarrow (\forall (p,q) \in \mathbb{Z}^2, a|(pb+qc))$
- 2. $\forall a, b, c, d \in \mathbb{Z}$, $(a|b \text{ et } c|d) \Rightarrow ac|bd$
- 3. $\forall a, b \in \mathbb{Z}, a|b \Rightarrow (\forall n \in \mathbb{N}, a^n|b^n)$

Remarque: Ecrire uniquement une implication ne signifie pas que la réciproque est fausse. La réciproque du troisième point est vraie mais n'est pas intéressante.

Preuve. Soient $a, b, c, d \in \mathbb{Z}$.

1. Supposons que a|b et a|c. Alors il existe $k_1, k_2 \in \mathbb{Z}$ tels que $b = k_1 a$ et $c = k_2 a$. Soient $p, q \in \mathbb{Z}$. On a : $pb + qc = (pk_1 + qk_2)a$ avec $pk_1 + qk_2 \in \mathbb{Z}$.

- 2. Supposons que a|b et c|d. Alors il existe $k_1, k_2 \in \mathbb{Z}$ tels que $b = k_1 a$ et $d = k_2 c$. D'où par produit : $bd = (k_1 a)(k_2 c) = (k_1 k_2)ac$ avec $k_1 k_2 \in \mathbb{Z}$ et donc ac|bd.
- 3. Supposons que a|b. Alors il existe $k_1 \in \mathbb{Z}$ tel que $b = k_1 a$. Donc $a^n = k_1^n a^n$ avec $k_1^n \in \mathbb{Z}$, et donc $a^n | b^n$.

Proposition 3

Soient $a, b \in \mathbb{Z}$. Supposons que $b \neq 0$ et $a \mid b$, alors :

 $|a| \leq |b|$.

Preuve. Comme a|b, il existe $k \in \mathbb{Z}$ tel que b = ka.

Comme $b \neq 0$ alors $k \neq 0$ et comme $k \in \mathbb{Z}$, on a donc $|k| \geq 1$.

Ainsi, comme $|a| \ge 0$: $|b| = |k| . |a| \ge |a|$.

1.2 Division euclidienne

Théorème 1

Soient $a \in \mathbb{Z}$ et $b \in \mathbb{N}^*$. Alors il existe un unique couple $(q, r) \in \mathbb{Z} \times \mathbb{N}$ tel que

$$a = bq + r$$
 et $0 \le r < b$.

On dit que q est le **quotient** et r le **reste** dans la **division euclidienne** de a par b.

Remarque:

- $\mathbb{Z} \times \mathbb{N}$ est le produit cartésien de \mathbb{Z} et \mathbb{N} , on a : $(q, r) \in \mathbb{Z} \times \mathbb{N} \Leftrightarrow (q \in \mathbb{Z} \text{ et } r \in \mathbb{N})$. On utilise cette notation afin d'avoir un objet (le couple) qui soit unique.
- Si $a \in \mathbb{N}$, alors $q \in \mathbb{N}$.

Preuve.

- Existence : Soit $b \in \mathbb{N}^*$.
 - Pour a = 0, posons q = r = 0. On a a = bq + r et $0 \le r < b$ donc (q, r) convient.
 - Soit a ∈ \mathbb{N} . Supposons qu'il existe (q, r) ∈ $\mathbb{Z} \times \mathbb{N}$ tels que a = bq + r.

Alors a + 1 = bq + r + 1.

- * Si r + 1 < b. Posons q' = q et r' = r + 1. On a a = bq' + r' et $0 \le r' < b$ donc (q', r') convient.
- * Si $r+1 \ge b$, alors, comme r < b, on a r = b-1 donc a+1 = bq+b = b(q+1). Posons q' = q+1 et r' = 0. On a a = bq' + r' et $0 \le r' < b$ donc (q', r') convient.
- * Dans tous les cas, il existe un couple (q', r') qui convient.
- Donc, par récurrence,

$$\forall a \in \mathbb{N}, \exists (q, r) \in \mathbb{Z} \times \mathbb{N}, (a = bq + r \text{ et } 0 \le r < b).$$

- Soit $a \in \mathbb{Z}^{-*}$ alors $-a \in \mathbb{N}$ donc il existe $(q, r) \in \mathbb{Z} \times \mathbb{N}$ tel que (-a = bq + r) et $0 \le r < b$.

On a donc a = -bq - r = b(-q - 1) + b - r et $0 < b - r \le b$.

- * Si b-r < b. Posons q' = -q-1 et r' = b-r. On a a = bq' + r' et $0 \le r' < b$ donc (q', r') convient.
- * Si $b-r \ge b$, alors, comme $0 \le r$, on a r=0 donc a=-bq. Posons q'=-q et r'=0. On a a=bq'+r' et $0 \le r' < b$ donc (q',r') convient.
- * Dans tous les cas, il existe un couple (q', r') qui convient.
- En conclusion :

$$\forall a \in \mathbb{Z}, \exists (q, r) \in \mathbb{Z} \times \mathbb{N}, (a = bq + r \text{ et } 0 \le r < b).$$

• <u>Unicité</u>: Soient $a \in \mathbb{Z}$ et $b \in \mathbb{N}^*$. Supposons qu'il existe $(q_1, r_1), (q_2, r_2) \in \mathbb{Z} \times \mathbb{N}$ tels que

$$a = bq_1 + r_1 = bq_2 + r_2$$
 et $0 \le r_1 < b0 \le r_2 < b$.

Alors $0 = b(q_1 - q_2) + r_1 - r_2$ donc:

$$r_1 - r_2 = b(q_2 - q_1).$$

Or: $-b < r_1 - r_2 < b \text{ donc } -b < b(q_2 - q_1) < b \text{ et comme } b > 0$:

$$-1 < q_2 - q_1 < 1$$
.

Or $q_2 - q_1 \in \mathbb{Z}$ donc $q_2 - q_1 = 0$ et donc $r_1 - r_2 = b.0 = 0$. Ainsi :

$$q_1 = q_2$$
 et $r_1 = r_2$.

D'où l'unicité.

- \Rightarrow **Exemple 1:** Soit $n \in \mathbb{N}^*$. On suppose que le reste de la division euclidienne de n par 7 est 2. Que valent les restes des divisions euclidiennes de n^2 et n^3 par 7?
- $rac{1}{4}$ Exemple 2: Soient $n, m \in \mathbb{N}^*$. On suppose que le reste de la division euclidienne de n par m est 8 et que le reste de la division euclidienne de 2n par m est 5. Que vaut m?

II pgcd

2.1 Définition

Définition 2

Soient $a, b \in \mathbb{Z}$ tels que $b \neq 0$. Le PGCD de a et b est le plus grand des diviseurs strictement positifs communs à a et b, il est noté pgcd (a, b) ou $a \land b$:

$$\operatorname{pgcd}(a, b) = a \wedge b = \max\{d \in \mathbb{N}^*, d | a \text{ et } d | b\}.$$

Proposition 4

Soient $a, b \in \mathbb{N}^*$.

$$pgcd(a, b) = a \Leftrightarrow a|b.$$

Preuve.

- Si pgcd (a, b) = a comme, par définition, pgcd (a, b)|b, on a a|b.
- Si a|b, alors a|a et a|b, de plus, si n|a et n|b alors $n \le a$ donc: $\operatorname{pgcd}(a,b) = a$.

2.2 Algorithme d'Euclide

Proposition 5

Soient $a, b \in \mathbb{N}^*$. Soit r le reste de la division de a par b.

Les entiers a et b ont les mêmes diviseurs que b et r et on a donc :

$$\operatorname{pgcd}(a, b) = \operatorname{pgcd}(b, r).$$

Preuve. Soit q le quotient de la division euclidienne de a par b. On a : a = bq + r.

- Soit d∈N* tel que d|a et d|b alors d|a bq donc d|r.
 Ainsi les diviseurs de a et b divisent b et r.
- Soit $d \in \mathbb{N}^*$ tel que d|b et d|r alors d|bq+r donc d|a. Ainsi les diviseurs de b et r divisent a et b.
- Donc a et b ont les mêmes diviseurs que b et r.

Algorithme 1 (Algorithme d'Euclide)

Soient $a, b \in \mathbb{N}^*$.

- On pose $r_0 = a$ et $r_1 = b$. On a alors $\operatorname{pgcd}(a, b) = \operatorname{pgcd}(r_0, r_1)$.
- Soit k∈N, on suppose r_k > 0 et r_{k+1} > 0 construits tels que pgcd (a, b) = pgcd (r_k, r_{k+1}).
 Soit r_{k+2} le reste de la division euclidienne de r_k par r_{k+1}.
 On a donc 0 ≤ r_{k+2} < r_{k+1} et :

$$pgcd(r_{k+1}, r_{k+2}) = pgcd(r_k, r_{k+1}) = pgcd(a, b).$$

De plus, si $r_{k+2} = 0$, alors $r_{k+1} | r_k$ donc pgcd $(r_k, r_{k+1}) = r_{k+1}$, ainsi :

$$\operatorname{pgcd}(a,b) = r_{k+1}$$
.

• La suite $(r_k)_{k\geq 1}$ est une suite strictement décroissante d'entiers naturels et est donc finie. Ainsi l'algorithme s'arrête et le pgcd est le dernier reste non nul.

- Calculer pgcd (45, 30).
- Calculer pgcd (360, 105).

2.3 Propriétés

Proposition 6

Soient $a, b, d \in \mathbb{N}^*$. On a :

 $(d|a \text{ et } d|b) \Longleftrightarrow d|\operatorname{pgcd}(a,b).$

Preuve.

- Supposons que $d|\operatorname{pgcd}(a,b)$. Comme $\operatorname{pgcd}(a,b)|a$ et $\operatorname{pgcd}(a,b)|b$, alors d|a et d|b.
- Supposons que d|a et d|b. Soit $(r_k)_{k \in [\![0,N]\!]}$ la suite définie par l'algorithme d'Euclide avec $r_N = \operatorname{pgcd}(a,b)$. Montrons que : $\forall k \in [\![0,N]\!]$, $d|r_k$.
 - Pour k = 0, $r_k = a$ donc $d | r_k$.
 - Pour k = 1, $r_k = b$ donc $d | r_k$.
 - Soit $k \in [0, N-2]$. Supposons que $d|r_k$ et $d|r_{k+1}$.

- * Si $r_{k+2}=0$, alors $d|r_{k+2}$. * Si $r_{k+2}\neq 0$, alors r_{k+2} est le reste de la division euclidienne de r_k par r_{k+1} donc, comme d divise r_k et r_{k+1} , alors d divise
- * Dans tous les cas : $d|r_{k+2}$.
- Donc, par récurrence finie double :

$$\forall k \in [[0, N]] \ d|r_k$$
.

- En particulier, comme $r_N = \operatorname{pgcd}(a, b)$, on a:

d|pgcd(a, b).

П

Proposition 7: Homogénéité du PGCD

 $\forall a, b, c \in \mathbb{N}^*$, pgcd(ca, cb) = c.pgcd(a, b)

Preuve. Posons $d = \operatorname{pgcd}(a, b)$ et $e = \operatorname{pgcd}(ca, cb)$.

- On a d|a et d|b, donc cd|ca et cd|cb. Ainsi : cd|pgcd(ca,cb) = e. Donc il existe $k \in \mathbb{N}^*$ tel que : e = kcd.
- $e|ca \operatorname{donc} kcd|ca$, ainsi kd|a. De même, $kd|b \operatorname{donc} kd|\operatorname{pgcd}(a,b) = d$. Ainsi k|1 donc k=1.
- On a donc:

 $\operatorname{pgcd}(ca, cb) = e = kcd = cd = c.\operatorname{pgcd}(a, b).$

 \Rightarrow **Exemple 4:** Soient $a, b, c \in \mathbb{N}^*$ tels que pgcd $(a, b) = \operatorname{pgcd}(a, c) = 1$. Montrer que :

$$pgcd(a, bc) = 1.$$

Corollaire 1

$$\mathbb{Q} = \left\{ \frac{p}{q}, p \in \mathbb{Z}, q \in \mathbb{N}^*, \operatorname{pgcd}(p, q) = 1 \right\}.$$

Preuve.

- Par définition: { p/q, p ∈ Z, q ∈ N*, pgcd (p, q) = 1 } ⊂ Q.
 Soit r ∈ Q. Il existe p ∈ Z et q ∈ N* tels que r = p/q.
 Posons d = pgcd (p, q). Il existe p' ∈ Z et q' ∈ N* tels que : p = dp' et q = dq'. On a alors :

$$r = \frac{dp'}{dq'} = \frac{p'}{q'} \text{ et pgcd}(p', q') = \frac{\text{pgcd}(p, q)}{d} = 1.$$

Donc:

$$\mathbb{Q} \subset \left\{ \frac{p}{q}, \, p \in \mathbb{Z}, \, q \in \mathbb{N}^*, \, \operatorname{pgcd}(p,q) = 1 \right\}.$$

• Ainsi:

$$\mathbb{Q} = \left\{ \frac{p}{q}, \, p \in \mathbb{Z}, \, q \in \mathbb{N}^*, \, \operatorname{pgcd}(p, q) = 1 \right\}.$$

III ppcm

Définition 3.1

Soient $a, b \in \mathbb{Z}$ tels que $b \neq 0$. Le PPCM de a et b est le plus petit des multiples strictement positifs communs à aet b, il est noté ppcm (a, b) ou $a \lor b$:

 $\operatorname{ppcm}(a, b) = a \vee b = \min\{m \in \mathbb{N}^*, a | m \text{ et } b | m\}.$

Proposition 8

Soient $a, b \in \mathbb{N}^*$.

$$ppcm(a, b) = a \Leftrightarrow b|a.$$

• Si ppcm (a, b) = a comme, par définition, b | ppcm(a, b), on a b | a.

• Si b|a, alors a|a et b|a, de plus, si a|m et b|m alors $a \le m$ donc: ppcm (a,b) = a.

3.2 Propriétés

Proposition 9

Soient $a, b, m \in \mathbb{N}^*$. On a :

 $(a|m \text{ et } b|m) \iff \operatorname{ppcm}(a,b)|m.$

Preuve.

• Supposons ppcm (a, b)|m. Comme a|ppcm(a, b) et b|ppcm(a, b), on a:

a|m et b|m.

• Supposons a|m et b|m. Soient q (resp. r) le quotient (resp. le reste) de la division euclidienne de m par ppcm (a,b). On a : m=q.ppcm (a,b)+r donc r=m-q.ppcm (a,b). De plus a|m et a|ppcm (a,b) donc a|r et de même b|r. Ainsi r est un multiple commun de a et b.

De plus, $0 \le r < \text{ppcm}(a, b)$ donc, par définition du ppcm, r = 0. Ainsi :

ppcm(a, b)|m.

Proposition 10

Soient $a, b \in \mathbb{N}^*$, on a:

pgcd(a, b).ppcm(a, b) = a.b.

Preuve. Posons $d = \operatorname{pgcd}(a, b)$ et $m = \operatorname{ppcm}(a, b)$. Alors, il existe $\alpha, \beta, \gamma, \delta \in \mathbb{N}$ tels que :

$$a = \alpha d$$
, $b = \beta d$, $m = \gamma a$, $m = \delta b$.

- $\alpha\beta d = \beta a = \alpha b$ donc $a|\alpha\beta d$ et $b|\alpha\beta d$, ainsi $m|\alpha\beta d$. Donc, il existe $k \in \mathbb{N}$ tel que : $mk = \alpha\beta d$.
- $mk = \gamma ak = a\beta \text{ donc } \beta = \gamma k$, donc $k|\beta$.
- $mk = \delta bk = b\alpha$ donc $\alpha = \delta k$, donc $k \mid \alpha$.
- Ainsi $k | \operatorname{pgcd}(\alpha, \beta)$. Or $\operatorname{pgcd}(a, b) = d = \operatorname{pgcd}(\alpha d, \beta d) = d \operatorname{pgcd}(\alpha, \beta)$. Donc: $\operatorname{pgcd}(\alpha, \beta) = 1$, ainsi k = 1.
- D'où $m = \alpha \beta d$, ainsi $md = \alpha d\beta d = ab$.

Arr **Exemple 5:** Soit $n \in \mathbb{N}^*$. Calculer $\operatorname{pgcd}(n, 2n + 1)$ et $\operatorname{ppcm}(n, 2n + 1)$.

IV Nombres premiers

4.1 Ensemble des nombres premiers

Définition 4

Un nombre $p \in \mathbb{N}$ est dit premier ssi $p \ge 2$ et :

$$\forall d \in \mathbb{N}^*, d | p \Rightarrow (d = 1 \text{ ou } d = p),$$

c'est-à-dire les seuls diviseurs de p sont 1 et lui même.

Proposition 11

Tout nombre entier $n \ge 2$ possède au moins un diviseur premier.

Preuve. On le montre par récurrence forte sur $n \ge 2$.

- Pour n = 2, la propriété est vraie puisque 2 est premier.
- Soit $n \ge 2$, supposons que tout nombre premier $k \in [2, n]$ admet au moins un diviseur premier.
 - Si n + 1 est premier, le résultat est établi.
 - Sinon il existe $d \in \mathbb{N}$ tels que $d \mid (n+1)$ avec $2 \le d \le n$. On applique l'hypothèse de récurrence à d: il existe donc p premier tel que $p \mid d$. Ainsi comme $d \mid (n+1)$, on a $p \mid (n+1)$.

Ceci prouve la propriété au rang n + 1.

• Ainsi, tout entier naturel $n \ge 2$ admet au moins un diviseur premier.

Proposition 12

L'ensemble des nombres premiers est infini.

Preuve.

Supposons que l'ensemble des nombres premiers soit fini. Notons $\{p_1, \dots, p_N\}$ l'ensemble des nombres premiers, avec $N \in \mathbb{N}^*$. Posons $n = p_1 \prod p_N + 1$. Alors $n \ge 2$ donc n admet un diviseur premier. Ainsi, il existe $k \in [1, N]$ tel que $p_k \mid n$.

Or $p_k|p_1 \prod p_N$ donc $p_k|n-p_1 \prod p_N$ c'est-à-dire $p_k|1$ donc $p_k=1$ ce qui est absurde.

Donc l'ensemble des nombres premiers est infini.

Décomposition en facteurs premiers 4.2

Théorème 2

Tout entier supérieur ou égal à 2 admet une décomposition en produit de nombres premiers, unique à l'ordre des facteurs près. Autrement dit , si $n \in \mathbb{N}$ et $n \ge 2$, alors il existe $r \in \mathbb{N}^*$, des nombres premiers deux à deux

distincts $p_1, ..., p_r$, et des entiers naturels non nuls $\alpha_1, ..., \alpha_r$ tels que $n = p_1^{\alpha_1} ... p_r^{\alpha_r} = \prod_{i=1}^r p_i^{\alpha_i}$.

 \Rightarrow **Exemple 6:** Soient $a, b \in \mathbb{N}^*$. On suppose que pgcd (a, b) = 1. Montrer que :

$$\forall n, m \in \mathbb{N}^*$$
, pgcd $(a^m, b^n) = 1$.

Proposition 13

Soient $a,b \in \mathbb{N} \setminus \{0,1\}$ tels que $a=p_1^{\alpha_1}\dots p_r^{\alpha_r}=\prod_{i=1}^r p_i^{\alpha_i}$ et $b=p_1^{\beta_1}\dots p_r^{\beta_r}=\prod_{i=1}^r p_i^{\beta_i}$ où $p_1,\ p_2,...,\ p_r$ est sont des nombres premiers distincts deux à deux, et $\alpha_1,...,\alpha_r \in \mathbb{N}$, $\beta_1,...,\beta_r \in \mathbb{N}$ (éventuellement nuls pour tenir compte d'un nombre premier qui pourrait ne diviser qu'un seul des deux entiers a ou b). Alors :

$$\operatorname{pgcd}(a,b) = p_1^{\min(\alpha_1,\beta_1)} \dots p_r^{\min(\alpha_r,\beta_r)} = \prod_{i=1}^r p_i^{\min(\alpha_i,\beta_i)}$$

$$\operatorname{ppcm}(a, b) = p_1^{\max(\alpha_1, \beta_1)} \dots p_r^{\max(\alpha_r, \beta_r)} = \prod_{i=1}^r p_i^{\max(\alpha_i, \beta_i)}$$

- Posons $d = \prod_{i=1}^{r} p_i^{\min(\alpha_i, \beta_i)}$.
 - Pour tout $i \in [1, r]$, $\min(\alpha_i, \beta_i) \le \alpha_i$. Donc : $a = \prod_{i=1}^r p_i^{\alpha_i \min(\alpha_i, \beta_i) + \min(\alpha_i, \beta_i)} = d$. $\prod_{i=1}^r p_i^{\alpha_i \min(\alpha_i, \beta_i)}$.
 - Ainsi, d|a et, de même, d|b.

 Posons $\alpha = \frac{a}{d}$ et $\beta = \frac{b}{d}$. On a $\alpha, \beta \in \mathbb{N}^*$ et : $\alpha = \prod_{i=1}^r p_i^{\alpha_i \min(\alpha_i, \beta_i)}$ et $\beta = \prod_{i=1}^r p_i^{\beta_i \min(\alpha_i, \beta_i)}$. Soit $i \in [1, r[]$, on a: $\alpha_i - \min(\alpha_i, \beta_i) = 0$ ou $\beta_i - \min(\alpha_i, \beta_i) = 0$ ainsi $p_i \not \mid \alpha$ ou $p_i \not \mid \beta$. Ainsi α et β n'ont pas de facteur premier commun donc pgcd $(\alpha, \beta) = 1$.
 - Donc:

$$pgcd(a, b) = pgcd(d\alpha, d\beta) = dpgcd(\alpha, \beta) = d.$$

• On a: $\operatorname{pgcd}(a,b)\operatorname{ppcm}(a,b) = ab = \prod_{i=1}^{r} p_i^{\alpha_i + \beta_i}.$ D'où $\operatorname{ppcm}(a,b) \prod_{i=1}^{r} p_i^{\min(\alpha_i,\beta_i)} = \prod_{i=1}^{r} p_i^{\alpha_i + \beta_i}.$ Ainsi, $\operatorname{ppcm}(a,b) = \prod_{i=1}^{r} p_i^{\alpha_i + \beta_i - \min(\alpha_i,\beta_i)}.$

Soit $i \in [1, r]$, on a : $\alpha_i + \beta_i - \min(\alpha_i, \beta_i) = \max(\alpha_i, \beta_i)$. En effet :

- Si $\alpha_i \ge \beta_i$. Alors, $\min(\alpha_i, \beta_i) = \beta_i$ et $\max(\alpha_i, \beta_i) = \alpha_i$. Ainsi, $\alpha_i + \beta_i - \min(\alpha_i, \beta_i) = \alpha_i + \beta_i - \beta_i = \alpha_i = \max(\alpha_i, \beta_i)$.
- Si $\alpha_i < \beta_i$. Alors, $\min(\alpha_i, \beta_i) = \alpha_i$ et $\max(\alpha_i, \beta_i) = \beta_i$. Ainsi, $\alpha_i + \beta_i - \min(\alpha_i, \beta_i) = \alpha_i + \beta_i - \alpha_i = \beta_i = \max(\alpha_i, \beta_i)$.
- \Rightarrow Exemple 7: Déterminer les entiers naturels non nuls b tels que ppcm (28, b) = 140.