Chapitre 4: Trigonométrie

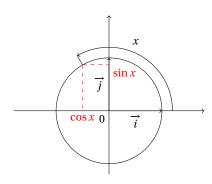
I Cercle trigonométrique

1.1 Définition

Définition 1

Soit $x \in \mathbb{R}$ et $(0, \overrightarrow{i}, \overrightarrow{j})$ un repère orthonormé direct. On note M le point du cercle trigonométrique (cercle de centre O et de rayon 1) tel que l'angle orienté $(\overrightarrow{i}, \overrightarrow{OM})$ a pour mesure x radians. On note alors $(\cos x, \sin x)$ les coordonnées de M dans le repère $(O, \overrightarrow{i}, \overrightarrow{j})$.

On appelle cosinus la fonction $cos: \mathbb{R} \to \mathbb{R}$ $x \mapsto cos(x)$ et sinus la fonction $cos: \mathbb{R} \to \mathbb{R}$ $x \mapsto sin(x)$.



1.2 Formules de trigonométrie

Formule 1 : Quelques valeurs

$$\cos(0) = 1 \qquad \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} \qquad \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \qquad \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \qquad \cos\left(\frac{\pi}{2}\right) = 0$$

$$\sin(0) = 0 \qquad \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \qquad \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \qquad \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \qquad \sin\left(\frac{\pi}{2}\right) = 1$$

Formule 2 : Cercle trigonométrique

$$\forall x \in \mathbb{R}, \cos^2 x + \sin^2 x = 1.$$

Formule 3 : Formules élémentaires

Soit $x \in \mathbb{R}$,

$$\cos(-x) = \cos(x) \qquad \sin(-x) = -\sin(x)$$

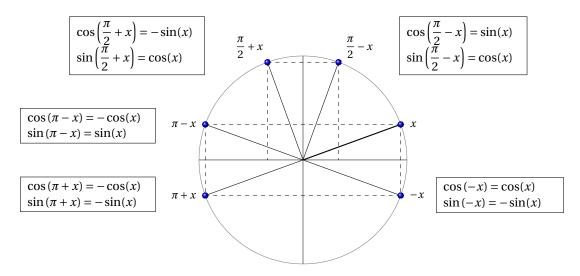
$$\cos(\pi - x) = -\cos(x) \qquad \sin(\pi - x) = \sin(x)$$

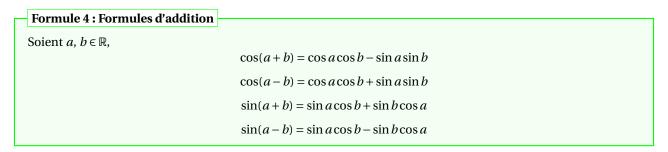
$$\cos(\pi + x) = -\cos(x) \qquad \sin(\pi + x) = -\sin(x)$$

$$\cos(\frac{\pi}{2} - x) = \sin(x) \qquad \sin(\frac{\pi}{2} - x) = \cos(x)$$

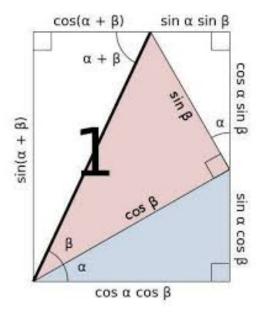
$$\cos(\frac{\pi}{2} + x) = -\sin(x) \qquad \sin(\frac{\pi}{2} + x) = \cos(x)$$

Remarque: Ces formules doivent être visualisées sur le cercle trigonométrique.





Justification géométrique des formules d'addition :



 $\textbf{Remarque:} \ ll\ faut\ savoir,\ \grave{a}\ partir\ de\ ces\ formules,\ trouver\ rapidement\ les\ valeurs\ d'un\ produit\ de\ deux\ cosinus\ et/ou\ sinus.$

Exemple 1: Soient $a, b ∈ \mathbb{R}$. Exprimer cos(a) cos(b) et cos(a) sin(b) comme des sommes.

Formule 5 : Formules de l'angle double

Soit $a \in \mathbb{R}$.

$$\cos(2a) = \cos^2(a) - \sin^2(a) = 1 - 2\sin^2(a) = 2\cos^2(a) - 1$$
$$\sin(2a) = 2\cos(a)\sin(a)$$

 \Rightarrow **Exemple 2:** Soit $x \in \mathbb{R}$, simplifier: $\cos\left(2x + \frac{\pi}{4}\right)$.

1.3 Congruences

Définition 2

Soit $a \in \mathbb{R}^*$, soient $x, y \in \mathbb{R}$.

On dit que x et y sont congrus modulo a et on note $x \equiv y$ [a] ou $x \equiv y$ mod a si et seulement si :

$$\exists k \in \mathbb{Z}, x = y + ka.$$

Proposition 1

Soient $a, b \in \mathbb{R}^*$, soient $x, y, z, t \in \mathbb{R}$. On a :

$$(x \equiv y \ [a] \text{ et } z \equiv t \ [a]) \Longrightarrow x + z \equiv y + t \ [a],$$

$$x \equiv y \ [a] \Longrightarrow bx \equiv by \ [ba].$$

Preuve.

• Supposons que $x \equiv y$ [a] et $z \equiv t$. Il existe $k, k' \in \mathbb{Z}$ tels que : x = y + ka et z = t + k'a. On a alors x + z = y + t + (k + k')a.

Posons k'' = k + k'. On a alors : $k'' \in \mathbb{Z}$ et x + z = y + t + k'' a donc :

$$x + z \equiv y + t$$
 [a].

• Supposons que $x \equiv y$ [a].

Il existe $k \in \mathbb{Z}$ tel que : x = y + ka. On a alors bx = by + kba.

$$bx \equiv by \ [ba].$$

II Équations et inéquations trigonométriques

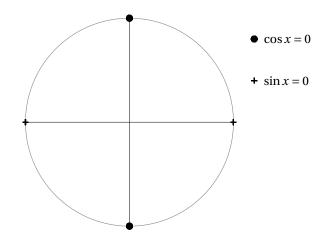
2.1 Équations trigonométriques

Proposition 2

Soit $x \in \mathbb{R}$.

$$\cos x = 0 \quad \Longleftrightarrow \quad x \equiv \frac{\pi}{2} \quad [\pi]$$

$$\sin x = 0 \iff x \equiv 0 \ [\pi]$$



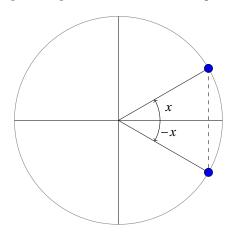
Soient $x, y \in \mathbb{R}$. Alors,

•
$$\cos x = \cos y \iff \begin{cases} x \equiv y & [2\pi] \\ \text{ou} \\ x \equiv -y & [2\pi] \end{cases}$$

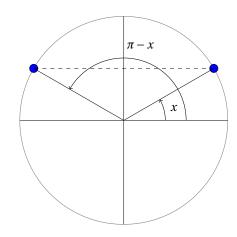
•
$$\sin x = \sin y \iff \begin{cases} x \equiv y \ [2\pi] \\ \text{ou} \\ x \equiv \pi - y \ [2\pi] \end{cases}$$

Remarque:

• Cette proposition peut se lire sur le cercle trigonométrique ce qui permet de la mémoriser.



 $\cos x = \cos y$



 $\sin x = \sin y$

• La proposition 2 est un cas particulier de la proposition 3, qui découle de la définition géométrique du cosinus et du sinus. On va déduire de la proposition 2 la preuve du cas général.

Preuve.

• Posons $a = \frac{x+y}{2}$ et $b = \frac{x-y}{2}$. On a:

 $\cos(x) = \cos(a+b) = \cos a \cos b - \sin a \sin b \text{ et } \cos(y) = \cos(a-b) = \cos a \cos b + \sin a \sin b.$

Ainsi:

 $\cos x = \cos y \Leftrightarrow \cos a \cos b - \sin a \sin b = \cos a \cos b + \sin a \sin b$

$$\Leftrightarrow \sin a \sin b = 0$$

$$\Leftrightarrow \left\{ \begin{array}{l} \sin a = 0 \\ \text{ou} \\ \sin b = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} a \equiv 0 \quad [\pi] \\ \text{ou} \\ b \equiv 0 \quad [\pi] \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \frac{x+y}{2} \equiv 0 \quad [\pi] \\ \text{ou} \\ \frac{x-y}{2} \equiv 0 \quad [\pi] \end{array} \right.$$

$$\Leftrightarrow \left\{ \begin{array}{l} x \equiv -y \quad [2\pi] \\ \text{ou} \end{array} \right.$$

• Posons $a = \frac{x+y}{2}$ et $b = \frac{x-y}{2}$. On a:

 $\sin(x) = \cos(a+b) = \sin a \cos b + \cos a \sin b \text{ et } \sin(y) = \sin(a-b) = \sin a \cos b - \cos a \sin b.$

Ainsi:

 $\sin x = \sin y \Leftrightarrow \sin a \cos b + \cos a \sin b = \sin a \cos b - \cos a \sin b$

$$\Leftrightarrow \cos a \sin b = 0$$

$$\Leftrightarrow \begin{cases} \cos a = 0 \\ \text{ou} \\ \sin b = 0 \end{cases} \Leftrightarrow \begin{cases} a = \frac{\pi}{2} \quad [\pi] \\ \text{ou} \\ b \equiv 0 \quad [\pi] \end{cases} \Leftrightarrow \begin{cases} \frac{x+y}{2} \equiv \frac{\pi}{2} \quad [\pi] \\ \text{ou} \\ \frac{x-y}{2} \equiv 0 \quad [\pi] \end{cases}$$

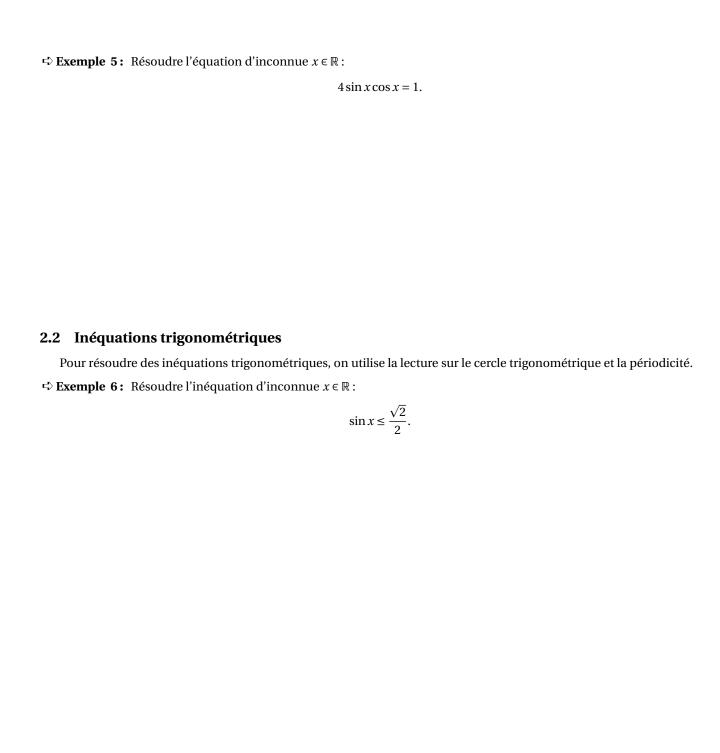
$$\Leftrightarrow \begin{cases} x \equiv \pi - y \quad [2\pi] \\ \text{ou} \\ x \equiv y \quad [2\pi] \end{cases}$$

⇔ Exemple 3: Résoudre l'équation d'inconnue $x \in \mathbb{R}$:

$$\sin x = \frac{\sqrt{3}}{2}.$$

⇔ Exemple 4: Résoudre l'équation d'inconnue $x \in \mathbb{R}$:

$$\sqrt{3}\cos x - \sin x = 1$$
.



 $\sqrt{3}\cos x - \sin x \ge 1$.

□ Exemple 7: Résoudre l'inéquation d'inconnue $x \in \mathbb{R}$:

III Fonctions cosinus et sinus

3.1 Propriétés globales

Proposition 4

Les fonctions cosinus et sinus sont 2π -périodiques :

$$\forall x \in \mathbb{R}, \cos(x+2\pi) = \cos x \text{ et } \sin(x+2\pi) = \sin x.$$

Proposition 5

La fonction cosinus est paire et la fonction sinus est impaire :

$$\forall x \in \mathbb{R}$$
, $\cos(-x) = \cos x$ et $\sin(-x) = -\sin x$.

Remarque: Ces deux résultats se voient sur le cercle trigonométrique.

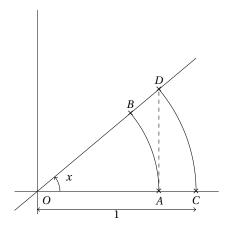
3.2 Dérivées et variations

Proposition 6

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

Preuve.

• Soit $x \in \left]0, \frac{\pi}{2}\right[$.



Notons:

- $-\ A_1$ l'aire du secteur angulaire de centre 0 passant par A et B,
- A_2 l'aire du secteur angulaire de centre 0 passant par C et D, A_3 l'aire du triangle 0AD.

On a:

$$A_1 \leq A_3 \leq A_2.$$

On rappelle que l'aire d'un secteur angulaire de rayon r et d'angle α est $\frac{\alpha r^2}{2}$. On a alors :

$$A_1 = \frac{x \cdot \cos^2 x}{2}$$
, $A_2 = \frac{x}{2}$ et $A_3 = \frac{\cos x \cdot \sin x}{2}$.

Ainsi:

$$\frac{x.\cos^2 x}{2} \le \frac{\cos x.\sin x}{2} \le \frac{x}{2}.$$

Donc:

$$\cos x \le \frac{\sin x}{x} \le \frac{1}{\cos x}.$$

Or : $\lim_{x\to 0^+} \cos x = 1$ et $\lim_{x\to 0^+} \frac{1}{\cos x} = 1$ donc, par théorème d'encadrement :

$$\lim_{x \to 0^+} \frac{\sin x}{x} = 1.$$

• Soit
$$x \in \left] - \frac{\pi}{2}, 0\right[$$
.
On a $\frac{\sin x}{x} = \frac{\sin(-x)}{-x}$.

De plus, d'après le point précédent : $\lim_{x\to 0^-} \frac{\sin(-x)}{-x} = 1$. Ainsi :

$$\lim_{x \to 0^-} \frac{\sin x}{x} = 1.$$

• Donc:

$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$

Proposition 7

$$\lim_{x \to 0} \frac{\cos x - 1}{x} = 0$$

Preuve.

Les fonctions cosinus et sinus sont dérivables sur $\mathbb R$ et :

$$\sin' = \cos, \qquad \cos' = -\sin.$$

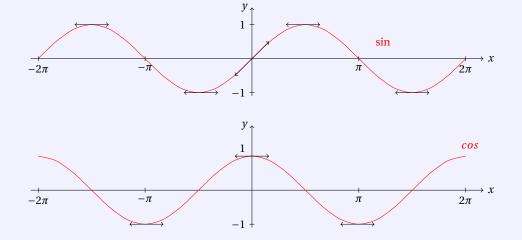
Preuve.

Proposition 9

Les variations sur $[0,\pi]$ des fonctions cosinus et sinus sont donnés par :

Eco rarrati	0110 000	[0,,,,]			000111
x	0		$\frac{\pi}{2}$		π
$(\sin)'(x)$		+	0	-	
sin	0		, 1		^ 0

U	iii uoiiiics	par.		
	X	0	$\frac{\pi}{2}$	π
	$(\cos)'(x)$	0	-	0
	cos	1 -	0	-1



Corollaire 1

Soit I un intervalle de \mathbb{R} , soit $u:I\to\mathbb{R}$ dérivable. Alors $\cos\circ u$ et $\sin\circ u$ sont dérivables sur I et :

$$\forall x \in I, (\cos \circ u)'(x) = -u'(x).\sin(u(x)) \text{ et } (\sin \circ u)'(x) = u'(x).\cos(u(x)).$$

 $\forall x \in \mathbb{R}, |\sin x| \le |x|.$

Preuve.

IV Tangente

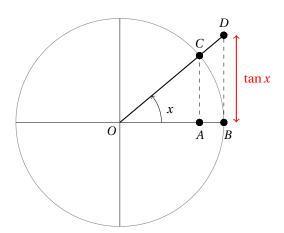
4.1 Définition

Définition 3

On appelle fonction tangente et on note tan, la fonction définie sur $\mathbb{R}\setminus\{\frac{\pi}{2}+k\pi,k\in\mathbb{Z}\}$ par : $x\mapsto\frac{\sin x}{\cos x}$.

Remarque: Le domaine de définition exclut les points d'annulation du cosinus.

Illustration:



D'après le théorème de Thalès :

$$\frac{BD}{OB} = \frac{AC}{OA}.$$

Ainsi:

$$\frac{BD}{1} = \frac{\sin x}{\cos x}.$$

D'où:

 $BD = \tan x$.

4.2 Formules de trigonométrie

Formule 6: Quelques valeurs

$$\tan(0) = 0$$
 $\tan\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{3}$ $\tan\left(\frac{\pi}{4}\right) = 1$ $\tan\left(\frac{\pi}{3}\right) = \sqrt{3}$

Formule 7 : Formules élémentaires

Soit $t \in \mathbb{R}$ tel que $t \not\equiv \frac{\pi}{2} \mod \pi$,

$$\tan(-t) = -\tan(t) \quad \tan(\pi + t) = \tan(t) \quad \tan(\pi - t) = -\tan(t)$$

Formule 8: Formules d'addition

Si $(a \not\equiv \frac{\pi}{2} \mod \pi)$, $(b \not\equiv \frac{\pi}{2} \mod \pi)$ et $(a + b \not\equiv \frac{\pi}{2} \mod \pi)$, alors

$$\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}$$

Si $(a \not\equiv \frac{\pi}{2} \mod \pi)$, $(b \not\equiv \frac{\pi}{2} \mod \pi)$ et $(a - b \not\equiv \frac{\pi}{2} \mod \pi)$, alors

$$\tan(a-b) = \frac{\tan a - \tan b}{1 + \tan a \tan b}$$

Preuve.

$$\tan(a+b) = \frac{\sin(a+b)}{\cos(a+b)}$$

$$= \frac{\sin a \cos b + \sin b \cos a}{\cos a \cos b - \sin a \sin b}$$

$$= \frac{\frac{\sin a \cos b + \sin b \cos a}{\cos a \cos b}}{\frac{\cos a \cos b - \sin a \sin b}{\cos a \cos b}}$$

$$= \frac{\tan a + \tan b}{1 - \tan a \tan b}$$

Formule 9 : Formules de l'angle double

Si $(a \not\equiv \frac{\pi}{2} \mod \pi)$ et $(a \not\equiv \frac{\pi}{4} \mod \frac{\pi}{2})$

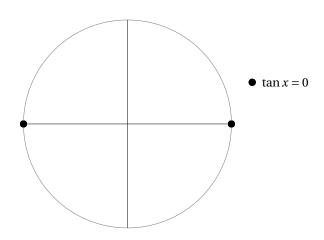
$$\tan(2a) = \frac{2\tan a}{1 - \tan^2 a}$$

4.3 Résolution d'équations trigonométriques

Proposition 11

Soit $x \in \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}$:

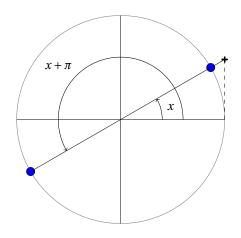
$$\tan x = 0 \iff x \equiv 0 \ [\pi].$$



Proposition 12

Soient $x, y \in \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}$, on a:

$$\tan x = \tan y \iff x \equiv y [\pi].$$



 $\tan x = \tan y$

Preuve.

4.4 Fonction tangente

Proposition 13

La fonction tan est π -périodique et impaire :

$$\forall x \in \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}, \tan(x + \pi) = \tan(x) \text{ et } \tan(-x) = -\tan x.$$

Proposition 14

La fonction tan est dérivable sur $\mathbb{R} \setminus \{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}$:

$$\forall x \in \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}, \tan'(x) = \frac{1}{\cos^2 x} = 1 + \tan^2 x.$$

Preuve. tan est dérivable sur $\mathbb{R}\setminus\{\frac{\pi}{2}+k\pi,k\in\mathbb{Z}\}$ comme quotient de fonctions qui le sont, le dénominateur ne s'annulant pas. Soit $x\in\mathbb{R}\setminus\{\frac{\pi}{2}+k\pi,k\in\mathbb{Z}\}$,

$$\tan'(x) = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = 1 + \tan^2 x = \frac{1}{\cos^2 x}.$$

Corollaire 2

Soit I un intervalle de \mathbb{R} , soit $u:I\to\mathbb{R}$ dérivable telle que : $\forall x\in I,\ u(x)\in\mathbb{R}\setminus\{\frac{\pi}{2}+k\pi,k\in\mathbb{Z}\}$. Alors $\tan\circ u$ est dérivable sur I et :

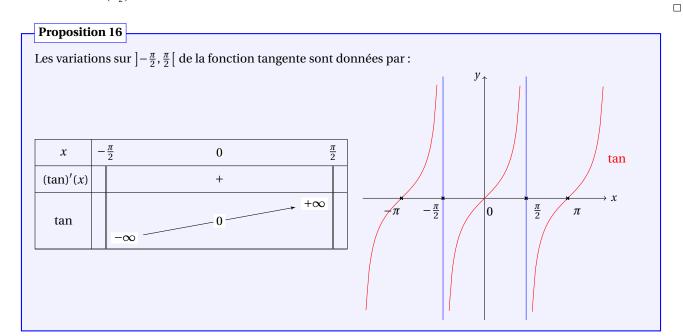
$$\forall x \in I, (\tan \circ u)'(x) = \frac{u'(x)}{\cos^2(u(x))} = u'(x) (1 + \tan^2(u(x))).$$

$$\lim_{x \to (\frac{\pi}{2})^{-}} \tan(x) = +\infty \text{ et } \lim_{x \to (-\frac{\pi}{2})^{+}} \tan(x) = -\infty.$$

Preuve.

On a $\lim_{x \to \frac{\pi}{2}} \sin x = 1$ et $\lim_{x \to \frac{\pi}{2}} \cos x = 0$. De plus, pour tout $x \in \left[0, \frac{\pi}{2}\right[, \cos(x) > 0$. Ainsi, $\lim_{x \to \left(\frac{\pi}{2}\right)^{-}} \tan x = +\infty$.

Par imparité, on a $\lim_{x \to \left(-\frac{\pi}{2}\right)^+} \tan x = -\infty$.



Fonctions cosinus et sinus hyperboliques

Définition 4

On définit les fonctions cosinus hyperbolique, noté ch, et sinus hyperbolique, noté sh, par :

ch:
$$x \mapsto \frac{\mathbb{R}}{2}$$
 et $x \mapsto \frac{\mathbb{R}}{2}$ $e^{x} + e^{-x}$ $e^{x} \cdot e^{x} \cdot e^{x}$.

Proposition 17

Preuve.

Remarque:

• Ces deux fonctions sont appelées cosinus et sinus par analogie avec les formules d'Euler qui sont :

$$\forall x \in \mathbb{R}, \cos(x) = \frac{e^{ix} + e^{-ix}}{2} \text{ et } \sin(x) = \frac{e^{ix} - e^{-ix}}{2i}.$$

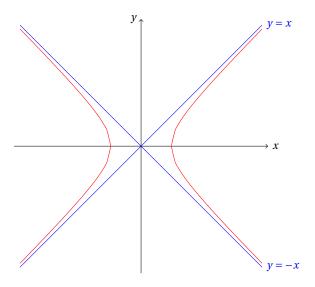
 $\bullet \ \ \text{On parle de trigonom\'etrie hyperbolique car la proposition pr\'ec\'edente montre que les points de coordonn\'ees (ch(t), sh(t))$ décrivent une hyperbole.

En effet, notons \mathcal{C} la courbe d'équation $x^2 - y^2 = 1$. Alors, pour tout $t \in \mathbb{R}$, $(\operatorname{ch}(t), \operatorname{sh}(t)) \in \mathcal{C}$.

De plus, soient $x, y \in \mathbb{R}$, on a :

$$(x, y) \in \mathcal{C} \Leftrightarrow y^2 = x^2 - 1 \Leftrightarrow y = \pm \sqrt{x^2 - 1} \text{ si } |x| \ge 1.$$

On obtient ainsi le tracé suivant :



Il s'agit d'une hyperbole.

Proposition 18

- Preuve. Soit $x \in \mathbb{R}$, $\operatorname{ch}(-x) = \frac{e^{-x} + e^x}{2} = \operatorname{ch}(x)$, $\operatorname{sh}(-x) = \frac{e^{-x} e^x}{2} = -\operatorname{sh}(x)$, donc ch est paire et sh est impaire.

Proposition 19

- $\exp \operatorname{est} \mathcal{C}^{\infty} \operatorname{sur} \mathbb{R}$ donc, par opérations, ch et sh sont $\mathcal{C}^{\infty} \operatorname{sur} \mathbb{R}$.
- Soit $x \in \mathbb{R}$,

$$ch'(x) = \frac{e^x - e^{-x}}{2} = sh(x).$$

Donc ch' = sh.

• Soit $x \in \mathbb{R}$,

$$\sinh'(x) = \frac{e^x + e^{-x}}{2} = \cosh(x).$$

Donc sh' = ch.

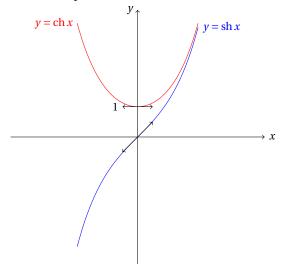
Proposition 20

On a : $\lim_{x \to -\infty} e^x = 0$ et $\lim_{x \to +\infty} e^x = +\infty$ ce qui donne le résultat. Preuve.

Proposition 21

- Soit x ∈ ℝ, sh'(x) = ch(x) = (e^x + e^{-x})/2 > 0. Ainsi, sh est strictement croissante sur ℝ.
 Comme sh(0) = 0, alors: ∀x ∈ ℝ^{*}₊, sh(x) > 0, ∀x ∈ ℝ^{*}₋, sh(x) < 0.
- On a ch' = sh donc ch est strictement décroissante sur] $-\infty$,0] et strictement croissante sur [0, $+\infty$ [.
- Ainsi ch admet un minimum en 0 valant ch (0) = 1. Donc : $\forall x \in \mathbb{R}$, ch $(x) \ge 1$.

Les courbes représentatives des fonction ch et sh sont :



Cosinus hyperbolique:

х	$-\infty$		0		+∞
ch'(x)		-	0	+	
ch	+∞		→ 1 <i>-</i>		→ +∞

Sinus hyperbolique:

	omus nyperbonque.				
x	$-\infty$	0	+∞		
sh'(x)		+			
sh	-∞	0	+∞		

Exemple 8: Résoudre l'équation suivante, d'inconnue $x \in \mathbb{R}$,

 $7\operatorname{ch} x + 2\operatorname{sh} x = 9.$

 \Leftrightarrow **Exemple 9:** Etudier la fonction suivante :

th:
$$\mathbb{R} \to \mathbb{R}$$

 $x \mapsto \frac{\sinh x}{\cosh x}$

VI Fonctions circulaires réciproques

6.1 Définitions

La fonction cos est continue et strictement décroissante sur l'intervalle $[0, \pi]$. Elle est donc bijective de $[0, \pi]$ vers $[\cos(\pi), \cos(0)] = [-1, 1]$.

La fonction sin est continue et strictement croissante sur l'intervalle $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Elle est donc bijective de $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ vers $\left[\sin\left(-\frac{\pi}{2}\right), \sin\left(\frac{\pi}{2}\right)\right] = [-1, 1]$.

Définition 6

La fonction tan est continue et strictement croissante sur l'intervalle $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$.

Elle est donc bijective de $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\text{ vers }] \lim_{-\frac{\pi}{2}^+} \tan, \lim_{\frac{\pi}{2}^-} \tan [= \mathbb{R}.$

Définition 7

Formule 10 : Quelques valeurs

$$Arccos (1) = 0 Arcsin (0) = 0 Arctan (0) = 0$$

$$Arccos \left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{6} Arcsin \left(\frac{1}{2}\right) = \frac{\pi}{6} Arctan \left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6}$$

$$Arccos \left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4} Arcsin \left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4} Arctan (1) = \frac{\pi}{4}$$

$$Arccos \left(\frac{1}{2}\right) = \frac{\pi}{3} Arcsin \left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{3} Arctan (\sqrt{3}) = \frac{\pi}{3}$$

$$Arccos (0) = \frac{\pi}{2} Arcsin (1) = \frac{\pi}{2} \lim_{x \to +\infty} Arctan (x) = \frac{\pi}{2}$$

6.2 Etude des fonctions

_	Proposition 22	
L	110position 22	

 ${\it Preuve.}$

Corollaire 3

Soit I un intervalle de \mathbb{R} .

• Soit $u: I \rightarrow]-1,1[$ dérivable alors :

$$\forall x \in I, (\operatorname{Arccos} \circ u)'(x) = -\frac{u'(x)}{\sqrt{1 - u(x)^2}}, \quad (\operatorname{Arcsin} \circ u)'(x) = \frac{u'(x)}{\sqrt{1 - u(x)^2}}$$

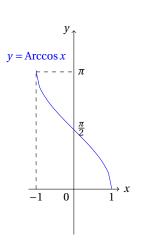
• Soit $u: I \to \mathbb{R}$ dérivable alors :

$$\forall x \in I$$
, $(Arctan \circ u)'(x) = \frac{u'(x)}{1 + u(x)^2}$

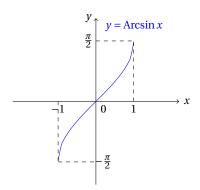
Corollaire 4

 ${\it Preuve.}$

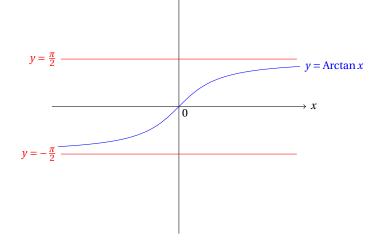
x	-1	0	1
Arccos	π	$\frac{\pi}{2}$	0



x	-1	0	1
Arcsin	$-\frac{\pi}{2}$		$\frac{\pi}{2}$



x	$-\infty$	0	+∞
Arctan	$-\frac{\pi}{2}$	0	$\rightarrow \frac{\pi}{2}$



6.3 Applications

Méthode 1

Pour montrer une **formule** faisant apparaître des fonctions trigonométriques réciproques, on doit :

- donner le domaine de définition de la formule,
- introduire une fonction f telle que la formule revienne à montrer que cette fonction est nulle,
- étudier le domaine de dérivabilité de f et montrer que f' est nulle,
- en déduire que f est constante sur chaque intervalle de son domaine de dérivabilité et, si besoin, utiliser un argument de continuité pour montrer que f est constante sur chaque intervalle de son domaine de définition,
- prendre une ou des valeurs pour montrer que la ou les constantes sont nulles.

Exemple 10: Montrer que:

$$\forall x \in [-1, 1], Arcsin(x) + Arccos(x) = \frac{\pi}{2}.$$

➪ **Exemple 11:** Montrer que:

$$\forall x \in \mathbb{R}^*$$
, Arctan x + Arctan $\left(\frac{1}{x}\right) = sgn(x) \cdot \frac{\pi}{2}$

où sgn(x) est le signe de x.

Soit $x \in [-1, 1]$,

$$\cos(\operatorname{Arccos}(x)) = x, \quad \sin(\operatorname{Arccos}(x)) = \sqrt{1 - x^2}, \quad \text{si } x \neq 0, \\ \tan(\operatorname{Arccos}(x)) = \frac{\sqrt{1 - x^2}}{x}$$

$$\cos(\operatorname{Arcsin}(x)) = \sqrt{1 - x^2}, \quad \sin(\operatorname{Arcsin}(x)) = x, \quad \operatorname{si}|x| \neq 1, \\ \tan(\operatorname{Arcsin}(x)) = \frac{x}{\sqrt{1 - x^2}}$$

Soit $x \in \mathbb{R}$,

$$\cos(\operatorname{Arctan}(x)) = \frac{1}{\sqrt{1+x^2}}, \quad \sin(\operatorname{Arctan}(x)) = \frac{x}{\sqrt{1+x^2}}, \quad \tan(\operatorname{Arctan}(x)) = x$$

Remarque: Il faut bien faire attention au sens de la composition et au domaine.

Les formules pour Arccos et Arcsin ont été prouvées dans la proposition 22.

Soit $x \in \mathbb{R}$.

On a : $\frac{1}{\cos^2(\operatorname{Arctan} x)} = 1 + \tan^2(\operatorname{Arctan} x) = 1 + x^2$. De plus, comme Arctan $x \in \left] - \frac{\pi}{2}, \frac{\pi}{2} \right[\text{alors } \cos(\operatorname{Arctan} x) > 0 \text{ donc} :$

$$\cos(\operatorname{Arctan}(x)) = \frac{1}{\sqrt{1+x^2}}.$$

Ainsi:

$$\sin(\arctan(x)) = \cos(\arctan(x)).\tan(\arctan x) = \frac{x}{\sqrt{1+x^2}}.$$

⇒ **Exemple 12:** Représenter la fonction :

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto \operatorname{Arcsin}(\sin x)$$

22

Méthode 2

Pour **résoudre une équation** (E) faisant apparaître des fonctions trigonométriques réciproques, on doit :

- donner le domaine de définition de l'équation (*E*),
- · raisonner par analyse-synthèse,
- dans l'analyse:
 - appliquer une fonction trigonométrique bien choisie à l'équation (E) pour en déduire une équation (E'),
 - raisonner par équivalences pour résoudre (E'),
 - conclure l'analyse,
- dans la synthèse:
 - considérer les solutions obtenues à la fin de l'analyse,
 - remonter les équivalences pour en déduire qu'elles vérifient (E'),
 - étudier des appartenances à des ensembles bien choisis pour vérifier si on peut ou non "enlever" les fonctions trigonométriques introduites dans l'analyse et ainsi vérifier (*E*).
- **Exemple 13:** Résoudre l'équation suivante, d'inconnue $x \in \mathbb{R}$:

$$Arcsin \frac{4}{5} + Arcsin \frac{5}{13} = Arcsin x.$$

⇔ Exemple 14: Résoudre l'équation suivante, d'inconnue $x \in \mathbb{R}$:

$$Arcsin x + Arcsin \sqrt{1 - x^2} = \frac{\pi}{2}.$$