Chapitre 4: Trigonométrie

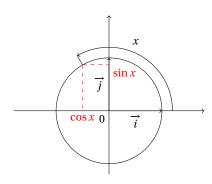
I Cercle trigonométrique

1.1 Définition

Définition 1

Soit $x \in \mathbb{R}$ et $(0, \overrightarrow{i}, \overrightarrow{j})$ un repère orthonormé direct. On note M le point du cercle trigonométrique (cercle de centre O et de rayon 1) tel que l'angle orienté $(\overrightarrow{i}, \overrightarrow{OM})$ a pour mesure x radians. On note alors $(\cos x, \sin x)$ les coordonnées de M dans le repère $(O, \overrightarrow{i}, \overrightarrow{j})$.

On appelle cosinus la fonction $cos: \mathbb{R} \to \mathbb{R}$ $x \mapsto cos(x)$ et sinus la fonction $cos: \mathbb{R} \to \mathbb{R}$ $x \mapsto sin(x)$.



1.2 Formules de trigonométrie

Formule 1: Quelques valeurs

$$\cos(0) = 1 \qquad \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} \qquad \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \qquad \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \qquad \cos\left(\frac{\pi}{2}\right) = 0$$

$$\sin(0) = 0 \qquad \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \qquad \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \qquad \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \qquad \sin\left(\frac{\pi}{2}\right) = 1$$

Formule 2 : Cercle trigonométrique

$$\forall x \in \mathbb{R}, \cos^2 x + \sin^2 x = 1.$$

Formule 3 : Formules élémentaires

Soit $x \in \mathbb{R}$,

$$\cos(-x) = \cos(x) \qquad \sin(-x) = -\sin(x)$$

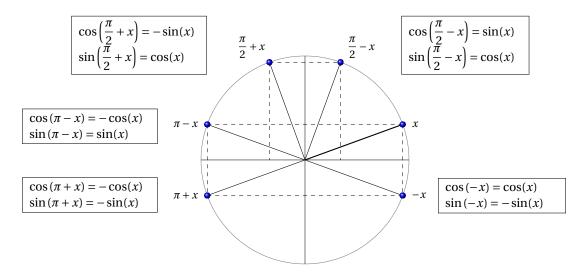
$$\cos(\pi - x) = -\cos(x) \qquad \sin(\pi - x) = \sin(x)$$

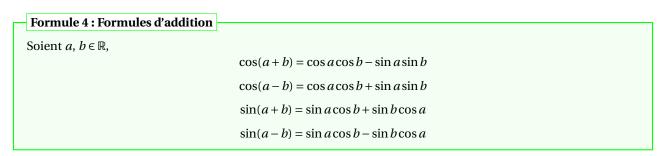
$$\cos(\pi + x) = -\cos(x) \qquad \sin(\pi + x) = -\sin(x)$$

$$\cos(\frac{\pi}{2} - x) = \sin(x) \qquad \sin(\frac{\pi}{2} - x) = \cos(x)$$

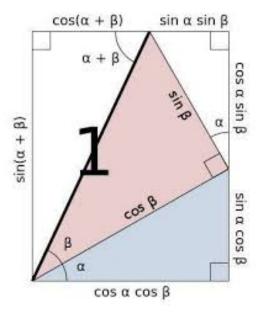
$$\cos(\frac{\pi}{2} + x) = -\sin(x) \qquad \sin(\frac{\pi}{2} + x) = \cos(x)$$

Remarque: Ces formules doivent être visualisées sur le cercle trigonométrique.





Justification géométrique des formules d'addition :



Remarque: Il faut savoir, à partir de ces formules, trouver rapidement les valeurs d'un produit de deux cosinus et/ou sinus.

Exemple 1: Soient $a, b \in \mathbb{R}$. Exprimer $\cos(a)\cos(b)$ et $\cos(a)\sin(b)$ comme des sommes.

Formule 5 : Formules de l'angle double Soit $a \in \mathbb{R}$, $\cos(2a) = \cos^2(a) - \sin^2(a) = 1 - 2\sin^2(a) = 2\cos^2(a) - 1$ $\sin(2a) = 2\cos(a)\sin(a)$

 \Rightarrow **Exemple 2:** Soit $x \in \mathbb{R}$, simplifier: $\cos\left(2x + \frac{\pi}{4}\right)$.

1.3 Congruences

Définition 2

Soit $a \in \mathbb{R}^*$, soient $x, y \in \mathbb{R}$.

On dit que x et y sont congrus modulo a et on note $x \equiv y$ [a] ou $x \equiv y$ mod a si et seulement si :

$$\exists k \in \mathbb{Z}, \, x = y + ka.$$

Proposition 1

Soient $a, b \in \mathbb{R}^*$, soient $x, y, z, t \in \mathbb{R}$. On a :

$$(x \equiv y \ [a] \text{ et } z \equiv t \ [a]) \Longrightarrow x + z \equiv y + t \ [a],$$

$$x \equiv y \ [a] \Longrightarrow bx \equiv by \ [ba].$$

Preuve.

• Supposons que $x \equiv y$ [a] et $z \equiv t$.

Il existe $k, k' \in \mathbb{Z}$ tels que : x = y + ka et z = t + k'a. On a alors x + z = y + t + (k + k')a.

Posons k'' = k + k'. On a alors : $k'' \in \mathbb{Z}$ et x + z = y + t + k'' a donc :

$$x + z \equiv y + t$$
 [a].

• Supposons que $x \equiv y$ [a].

Il existe $k \in \mathbb{Z}$ tel que : x = y + ka. On a alors bx = by + kba.

$$bx \equiv by \ [ba].$$

II Équations et inéquations trigonométriques

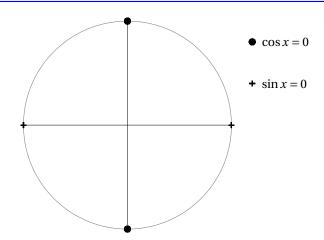
2.1 Équations trigonométriques

Proposition 2

Soit $x \in \mathbb{R}$.

$$\cos x = 0 \iff x \equiv \frac{\pi}{2} [\pi]$$

$$\sin x = 0 \iff x \equiv 0 \ [\pi]$$



Proposition 3

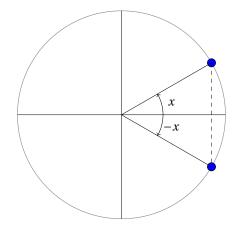
Soient $x, y \in \mathbb{R}$. Alors,

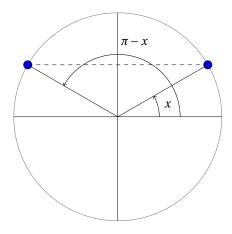
•
$$\cos x = \cos y \iff \begin{cases} x \equiv y & [2\pi] \\ \text{ou} \\ x \equiv -y & [2\pi] \end{cases}$$

•
$$\sin x = \sin y \iff \begin{cases} x \equiv y & [2\pi] \\ \text{ou} \\ x \equiv \pi - y & [2\pi] \end{cases}$$

Remarque:

• Cette proposition peut se lire sur le cercle trigonométrique ce qui permet de la mémoriser.





 $\cos x = \cos y$

 $\sin x = \sin y$

• La proposition 2 est un cas particulier de la proposition 3, qui découle de la définition géométrique du cosinus et du sinus. On va déduire de la proposition 2 la preuve du cas général.

Preuve.

• Posons $a = \frac{x+y}{2}$ et $b = \frac{x-y}{2}$. On a:

 $\cos(x) = \cos(a+b) = \cos a \cos b - \sin a \sin b \text{ et } \cos(y) = \cos(a-b) = \cos a \cos b + \sin a \sin b.$

Ainsi:

 $\cos x = \cos y \Leftrightarrow \cos a \cos b - \sin a \sin b = \cos a \cos b + \sin a \sin b$

$$\Leftrightarrow \sin a \sin b = 0$$

$$\Leftrightarrow \left\{ \begin{array}{l} \sin a = 0 \\ \text{ou} \\ \sin b = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} a \equiv 0 \quad [\pi] \\ \text{ou} \\ b \equiv 0 \quad [\pi] \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \frac{x+y}{2} \equiv 0 \quad [\pi] \\ \text{ou} \\ \frac{x-y}{2} \equiv 0 \quad [\pi] \end{array} \right.$$

$$\Leftrightarrow \left\{ \begin{array}{l} x \equiv -y \quad [2\pi] \\ \text{ou} \\ x \equiv y \quad [2\pi] \end{array} \right.$$

• Posons $a = \frac{x+y}{2}$ et $b = \frac{x-y}{2}$. On a:

 $\sin(x) = \cos(a+b) = \sin a \cos b + \cos a \sin b \text{ et } \sin(y) = \sin(a-b) = \sin a \cos b - \cos a \sin b.$

Ainsi:

 $\sin x = \sin y \Leftrightarrow \sin a \cos b + \cos a \sin b = \sin a \cos b - \cos a \sin b$

$$\Leftrightarrow \cos a \sin b = 0$$

$$\Leftrightarrow \left\{ \begin{array}{l} \cos a = 0 \\ \text{ou} \\ \sin b = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} a \equiv \frac{\pi}{2} \quad [\pi] \\ \text{ou} \\ b \equiv 0 \quad [\pi] \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \frac{x+y}{2} \equiv \frac{\pi}{2} \quad [\pi] \\ \text{ou} \\ \frac{x-y}{2} \equiv 0 \quad [\pi] \end{array} \right.$$

$$\Leftrightarrow \left\{ \begin{array}{l} x \equiv \pi - y \quad [2\pi] \\ \text{ou} \\ x \equiv y \quad [2\pi] \end{array} \right.$$

□ Exemple 3: Résoudre l'équation d'inconnue $x \in \mathbb{R}$:

$$\sin x = \frac{\sqrt{3}}{2}.$$

 \Rightarrow **Exemple 4:** Résoudre l'équation d'inconnue $x \in \mathbb{R}$:

$$\sqrt{3}\cos x - \sin x = 1$$
.

□ Exemple 5: Résoudre l'équation d'inconnue $x \in \mathbb{R}$:

 $4\sin x\cos x = 1$.

2.2 Inéquations trigonométriques

Pour résoudre des inéquations trigonométriques, on utilise la lecture sur le cercle trigonométrique et la périodicité.

Exemple 6: Résoudre l'inéquation d'inconnue $x \in \mathbb{R}$:

$$\sin x \le \frac{\sqrt{2}}{2}.$$

⇔ Exemple 7: Résoudre l'inéquation d'inconnue $x \in \mathbb{R}$:

$$\sqrt{3}\cos x - \sin x \ge 1$$
.

III Fonctions cosinus et sinus

3.1 Propriétés globales

Proposition 4

Les fonctions cosinus et sinus sont 2π -périodiques :

$$\forall x \in \mathbb{R}$$
, $\cos(x+2\pi) = \cos x$ et $\sin(x+2\pi) = \sin x$.

Proposition 5

La fonction cosinus est paire et la fonction sinus est impaire :

$$\forall x \in \mathbb{R}$$
, $\cos(-x) = \cos x$ et $\sin(-x) = -\sin x$.

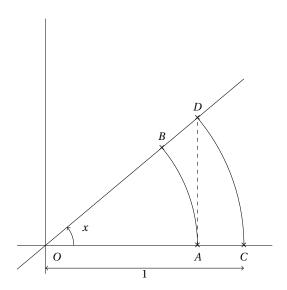
3.2 Dérivées et variations

Proposition 6

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

Preuve.

• Soit $x \in]0, \frac{\pi}{2}[$.



Notons:

- A_1 l'aire du secteur angulaire de centre 0 passant par A et B,
- A_2 l'aire du secteur angulaire de centre 0 passant par C et D,
- A_3 l'aire du triangle 0AD.

On a:

$$A_1 \leq A_3 \leq A_2$$
.

On rappelle que l'aire d'un secteur angulaire de rayon r et d'angle α est $\frac{\alpha r^2}{2}$. On a alors :

$$A_1 = \frac{x \cdot \cos^2 x}{2}$$
, $A_2 = \frac{x}{2}$ et $A_3 = \frac{\cos x \cdot \sin x}{2}$.

Ainsi:

$$\frac{x \cdot \cos^2 x}{2} \le \frac{\cos x \cdot \sin x}{2} \le \frac{x}{2}.$$

Donc:

$$\cos x \le \frac{\sin x}{x} \le \frac{1}{\cos x}.$$

Or: $\lim_{x\to 0^+} \cos x = 1$ et $\lim_{x\to 0^+} \frac{1}{\cos x} = 1$ donc, par théorème d'encadrement:

$$\lim_{x \to 0^+} \frac{\sin x}{x} = 1.$$

• Soit $x \in \left] - \frac{\pi}{2}, 0\right[$. On a $\frac{\sin x}{x} = \frac{\sin(-x)}{-x}$.

De plus, d'après le point précédent : $\lim_{x\to 0^-} \frac{\sin(-x)}{-x} = 1$. Ainsi :

$$\lim_{x \to 0^-} \frac{\sin x}{x} = 1.$$

• Donc:

$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$

Proposition 7

$$\lim_{x \to 0} \frac{\cos x - 1}{x} = 0$$

Soit $x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$. On a: Preuve.

$$\frac{\cos x - 1}{x} = \frac{(\cos x - 1)(\cos x + 1)}{x(\cos x + 1)} = \frac{\cos^2 x - 1}{x(\cos x + 1)} = \frac{-\sin^2 x}{x(\cos x + 1)} = -\frac{\sin x}{x} \frac{\sin x}{\cos x + 1}.$$

Or: $\lim_{x\to 0} \frac{\sin x}{x} = 1$, $\lim_{x\to 0} \sin x = 0$ et $\lim_{x\to 0} (\cos x + 1) = 2$ donc:

$$\lim_{x\to 0}\frac{\cos x-1}{x}=0.$$

Proposition 8

Les fonctions cosinus et sinus sont dérivables sur $\mathbb R$ et :

$$\sin' = \cos, \qquad \cos' = -\sin.$$

Preuve. Soit $x \in \mathbb{R}$.

• Soit $h \in \mathbb{R}^*$. On a:

$$\frac{\sin(x+h)-\sin(x)}{h} = \frac{\sin x \cos h + \sin h \cos x - \sin(x)}{h} = \sin x \frac{\cos h - 1}{h} + \frac{\sin h}{h} \cos x.$$

Or: $\lim_{h\to 0} \frac{\sin h}{h} = 1$ et $\lim_{h\to 0} \frac{\cos h - 1}{h} = 1$ donc:

$$\lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h} = \sin x.$$

Ainsi sin est dérivable en x et $\sin'(x) = \cos x$.

On a : $\forall x \in \mathbb{R}$, $\cos x = \sin(\frac{\pi}{2} - x)$ donc \cos est dérivable $\sup \mathbb{R}$ et :

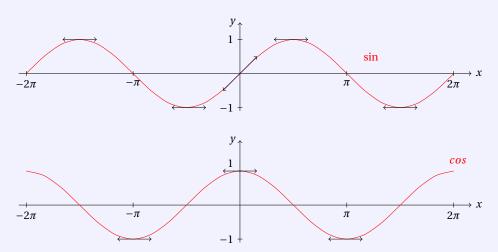
$$\forall x \in \mathbb{R}, \cos'(x) = -\sin'\left(\frac{\pi}{2} - x\right) = -\cos\left(\frac{\pi}{2} - x\right) = -\sin x.$$

Proposition 9

Les variations sur $[0,\pi]$ des fonctions cosinus et sinus sont donnés par :

		[-,]			
x	0		$\frac{\pi}{2}$		π
$(\sin)'(x)$		+	0	-	
sin	0		, 1		• 0

,	on domies par.				
	X	0	$\frac{\pi}{2}$	π	
	$(\cos)'(x)$	0	-	0	
	cos	1 -	0	-1	



Corollaire 1

Soit I un intervalle de \mathbb{R} , soit $u:I\to\mathbb{R}$ dérivable. Alors $\cos\circ u$ et $\sin\circ u$ sont dérivables sur I et :

$$\forall x \in I, (\cos \circ u)'(x) = -u'(x).\sin(u(x)) \text{ et } (\sin \circ u)'(x) = u'(x).\cos(u(x)).$$

Proposition 10

 $\forall x \in \mathbb{R}, |\sin x| \le |x|.$

Preuve.

• Soit $x \in]-\infty, -1] \cup [1, +\infty[$. On a:

 $|x| \ge 1 \ge |\sin x|.$

• Posons:

$$f: [0,1[\rightarrow \mathbb{R} \\ x \mapsto \sin x + x] \text{ et } g: [0,1[\rightarrow \mathbb{R} \\ x \mapsto \sin x - x].$$

f et g sont dérivables et, soit $x \in [0,1[$:

$$f'(x) = \cos x + 1 \ge 0$$
 et $g'(x) = \cos x - 1 \le 0$.

Donc f est croissante et g est décroissante. Comme f(0)=g(0)=0, on a $f\geq 0$ et $g\leq 0$. Ainsi :

 $\forall x \in [0,1[,-x \leq \sin x \leq x.$

Donc:

$$\forall x \in [0,1[,|\sin x| \leq |x|.$$

• Soit] -1,0[, alors $-x \in [0,1[$ donc : $|\sin(-x)| \le |-x|$ ainsi :

 $|\sin x| \le |x|$.

• On a donc:

 $\forall x \in \mathbb{R}, |\sin x| \le |x|.$

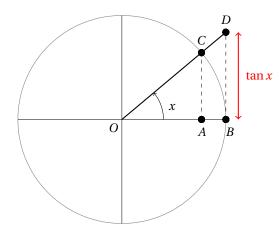
IV Tangente

4.1 Définition

Définition 3

On appelle fonction tangente et on note tan, la fonction définie sur $\mathbb{R}\setminus\{\frac{\pi}{2}+k\pi,k\in\mathbb{Z}\}$ par : $x\mapsto\frac{\sin x}{\cos x}$.

Illustration:



D'après le théorème de Thalès :

$$\frac{BD}{OB} = \frac{AC}{OA}.$$

Ainsi:

$$\frac{BD}{1} = \frac{\sin x}{\cos x}$$

D'où:

$$BD = \tan x$$
.

4.2 Formules de trigonométrie

Formule 6: Quelques valeurs

$$\tan(0) = 0$$
 $\tan\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{3}$ $\tan\left(\frac{\pi}{4}\right) = 1$ $\tan\left(\frac{\pi}{3}\right) = \sqrt{3}$

Formule 7 : Formules élémentaires

Soit $t \in \mathbb{R}$ tel que $t \not\equiv \frac{\pi}{2} \mod \pi$,

$$\tan(-t) = -\tan(t) \quad \tan(\pi + t) = \tan(t) \quad \tan(\pi - t) = -\tan(t)$$

Formule 8: Formules d'addition

Si $(a \not\equiv \frac{\pi}{2} \mod \pi)$, $(b \not\equiv \frac{\pi}{2} \mod \pi)$ et $(a + b \not\equiv \frac{\pi}{2} \mod \pi)$, alors

$$\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}$$

Si $(a \not\equiv \frac{\pi}{2} \mod \pi)$, $(b \not\equiv \frac{\pi}{2} \mod \pi)$ et $(a - b \not\equiv \frac{\pi}{2} \mod \pi)$, alors

$$\tan(a-b) = \frac{\tan a - \tan b}{1 + \tan a \tan b}$$

Preuve.

$$\tan(a+b) = \frac{\sin(a+b)}{\cos(a+b)}$$

$$= \frac{\sin a \cos b + \sin b \cos a}{\cos a \cos b - \sin a \sin b}$$

$$= \frac{\frac{\sin a \cos b + \sin b \cos a}{\cos a \cos b}}{\frac{\cos a \cos b - \sin a \sin b}{\cos a \cos b}}$$

$$= \frac{\tan a + \tan b}{1 - \tan a \tan b}$$

Formule 9 : Formules de l'angle double

Si
$$(a \not\equiv \frac{\pi}{2} \mod \pi)$$
 et $(a \not\equiv \frac{\pi}{4} \mod \frac{\pi}{2})$

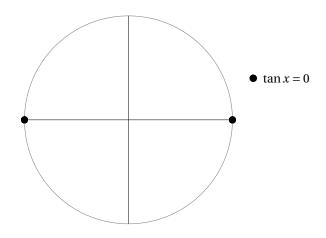
$$\tan(2a) = \frac{2\tan a}{1 - \tan^2 a}$$

4.3 Résolution d'équations trigonométriques

Proposition 11

Soit $x \in \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}$:

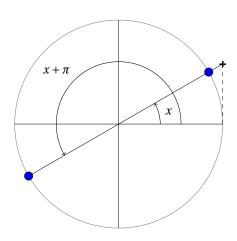
$$\tan x = 0 \iff x \equiv 0 [\pi].$$



Proposition 12

Soient $x, y \in \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}\$, on a :

$$\tan x = \tan y \iff x \equiv y [\pi].$$



 $\tan x = \tan y$

Preuve.

$$\tan x = \tan y \iff \frac{\sin x}{\cos x} = \frac{\sin y}{\cos y}$$

$$\iff \sin x \cos y = \sin y \cos x$$

$$\iff \sin x \cos y - \sin y \cos x = 0$$

$$\iff \sin(x - y) = 0$$

$$\iff x - y = 0 \quad [\pi]$$

$$\iff x \equiv y \quad [\pi]$$

4.4 Fonction tangente

Proposition 13

La fonction tan est π -périodique et impaire :

$$\forall x \in \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}, \tan(x + \pi) = \tan(x) \text{ et } \tan(-x) = -\tan x.$$

Proposition 14

La fonction tan est dérivable sur $\mathbb{R}\setminus\{\frac{\pi}{2}+k\pi,k\in\mathbb{Z}\}$:

$$\forall x \in \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}, \tan'(x) = \frac{1}{\cos^2 x} = 1 + \tan^2 x.$$

Preuve. tan est dérivable sur $\mathbb{R}\setminus\{\frac{\pi}{2}+k\pi,k\in\mathbb{Z}\}$ comme quotient de fonctions qui le sont, le dénominateur ne s'annulant pas. Soit $x\in\mathbb{Z}$ $\mathbb{R} \setminus \{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\},\$

$$\tan'(x) = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = 1 + \tan^2 x = \frac{1}{\cos^2 x}.$$

Corollaire 2

Soit I un intervalle de \mathbb{R} , soit $u:I\to\mathbb{R}$ dérivable telle que : $\forall x\in I,\ u(x)\in\mathbb{R}\setminus\{\frac{\pi}{2}+k\pi,k\in\mathbb{Z}\}$. Alors $\tan\circ u$ est dérivable sur *I* et :

$$\forall x \in I, (\tan \circ u)'(x) = \frac{u'(x)}{\cos^2(u(x))} = u'(x) \left(1 + \tan^2(u(x)) \right).$$

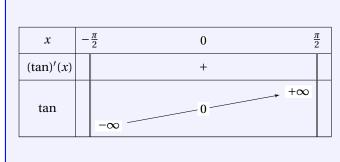
Proposition 15

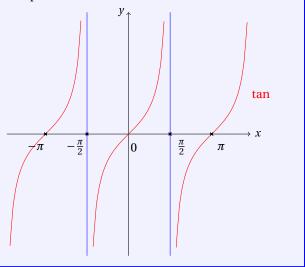
$$\lim_{x \to (\frac{\pi}{2})^{-}} \tan(x) = +\infty \text{ et } \lim_{x \to (-\frac{\pi}{2})^{+}} \tan(x) = -\infty.$$

On a $\lim_{x \to \frac{\pi}{2}} \sin x = 1$ et $\lim_{x \to \frac{\pi}{2}} \cos x = 0$. De plus, pour tout $x \in \left[0, \frac{\pi}{2}\right[, \cos(x) > 0$. Ainsi, $\lim_{x \to \left(\frac{\pi}{2}\right)^{-}} \tan x = +\infty$. Par imparité, on a $\lim_{x \to \left(-\frac{\pi}{2}\right)^{+}} \tan x = -\infty$.

Proposition 16

Les variations sur $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$ de la fonction tangente sont données par :





Fonctions cosinus et sinus hyperboliques

Définition 4

On définit les fonctions cosinus hyperbolique, noté ch, et sinus hyperbolique, noté sh, par :

ch:
$$x \mapsto \frac{\mathbb{R}}{2}$$
 et $x \mapsto \frac{\mathbb{R}}{2}$ $e^{x} \cdot e^{-x}$ et $x \mapsto \frac{\mathbb{R}}{2}$.

sh:
$$x \mapsto \frac{e^x - e^{-x}}{2}$$

Proposition 17

$$\forall x \in \mathbb{R}, \operatorname{ch}^{2}(x) - \operatorname{sh}^{2}(x) = 1.$$

Preuve. Soit $x \in \mathbb{R}$,

$$\operatorname{ch}^2(x) - \operatorname{sh}^2(x) = \frac{(e^x + e^{-x})^2 - (e^x - e^{-x})^2}{4} = \frac{(e^{2x} + 2 + e^{-2x}) - (e^{2x} - 2 + e^{-2x})}{4} = \frac{4}{4} = 1.$$

Proposition 18

ch est paire et sh est impaire.

Preuve. Soit $x \in \mathbb{R}$, • $\operatorname{ch}(-x) = \frac{e^{-x} + e^x}{2} = \operatorname{ch}(x)$, • $\operatorname{sh}(-x) = \frac{e^{-x} - e^x}{2} = -\operatorname{sh}(x)$, donc ch est paire et sh est impaire.

Proposition 19

ch et sh sont C^{∞} sur \mathbb{R} et ch' = sh et sh' = ch.

Preuve.

• exp est \mathcal{C}^{∞} sur \mathbb{R} donc, par opérations, ch et sh sont \mathcal{C}^{∞} sur \mathbb{R} .

• Soit $x \in \mathbb{R}$,

$$ch'(x) = \frac{e^x - e^{-x}}{2} = sh(x).$$

Donc ch' = sh.

• Soit $x \in \mathbb{R}$,

$$\sinh'(x) = \frac{e^x + e^{-x}}{2} = \cosh(x).$$

Donc sh' = ch.

Proposition 20

$$\lim_{x \to -\infty} \operatorname{ch}(x) = +\infty \qquad \qquad \operatorname{ch}(0) = 1 \qquad \qquad \lim_{x \to +\infty} \operatorname{ch}(x) = +\infty$$

$$\lim_{x \to -\infty} \operatorname{sh}(x) = -\infty \qquad \qquad \operatorname{sh}(0) = 0 \qquad \qquad \lim_{x \to +\infty} \operatorname{sh}(x) = +\infty$$

On a : $\lim_{x \to -\infty} e^x = 0$ et $\lim_{x \to +\infty} e^x = +\infty$ ce qui donne le résultat.

Proposition 21

ullet sh est strictement croissante sur $\mathbb R$.

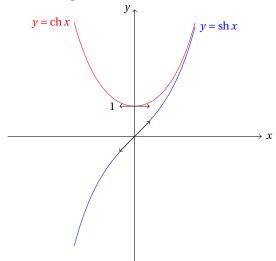
• ch est strictement décroissante sur $]-\infty,0]$ et strictement croissante sur $[0,+\infty[$.

• $\forall x \in \mathbb{R}$, $\operatorname{ch}(x) \ge 1$, $\forall x \in \mathbb{R}_+^*$, $\operatorname{sh}(x) > 0$, , $\forall x \in \mathbb{R}_-^*$, $\operatorname{sh}(x) < 0$.

• Soit $x \in \mathbb{R}$, $sh'(x) = ch(x) = \frac{e^x + e^{-x}}{2} > 0$. Ainsi, sh est strictement croissante sur \mathbb{R} .

- Comme sh (0) = 0, alors : $\forall x \in \mathbb{R}_{+}^{*}$, sh (x) > 0, , $\forall x \in \mathbb{R}_{-}^{*}$, sh (x) < 0.
- On a ch' = sh donc ch est strictement décroissante sur $]-\infty,0]$ et strictement croissante sur $[0,+\infty[$.
- Ainsi ch admet un minimum en 0 valant ch (0) = 1. Donc : $\forall x \in \mathbb{R}$, ch $(x) \ge 1$.

Les courbes représentatives des fonction ch et sh sont :



Cosinus	hyperbolique	•
Coomia	nj perbonque	۰

х	$-\infty$		0		+∞
ch'(x)		_	0	+	
ch	+∞		→ 1 -		→ +∞

Sinus hyperbolique:

		71 1	
x	$-\infty$	0	+∞
sh'(x)		+	
sh	-∞	0	+∞

 \triangleleft **Exemple 8:** Résoudre l'équation suivante, d'inconnue $x \in \mathbb{R}$,

$$7\operatorname{ch} x + 2\operatorname{sh} x = 9.$$

th:
$$\mathbb{R} \to \mathbb{R}$$

 $x \mapsto \frac{\sinh x}{\cosh x}$

VI Fonctions circulaires réciproques

6.1 Définitions

La fonction cos est continue et strictement décroissante sur l'intervalle $[0,\pi]$. Elle est donc bijective de $[0,\pi]$ vers $[\cos(\pi),\cos(0)]=[-1,1]$.

Définition 5

La fonction cos réalise une bijection de $[0, \pi]$ sur [-1, 1].

On appelle arc cosinus et on note Arccos : $[-1,1] \rightarrow [0,\pi]$ sa bijection réciproque.

On a:

$$\forall x \in [0, \pi], \forall y \in [-1, 1], (\cos x = y \iff x = \operatorname{Arccos}(y)).$$

La fonction sin est continue et strictement croissante sur l'intervalle $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Elle est donc bijective de $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ vers $\left[\sin\left(-\frac{\pi}{2}\right), \sin\left(\frac{\pi}{2}\right)\right] = [-1, 1]$.

Définition 6

La fonction sin réalise une bijection de $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ sur [-1, 1].

On appelle arc sinus et on note Arcsin : $[-1,1] \rightarrow \left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ sa bijection réciproque. On a :

$$\forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \forall y \in [-1, 1], \left(\sin x = y \Longleftrightarrow x = \operatorname{Arcsin}(y)\right).$$

La fonction tan est continue et strictement croissante sur l'intervalle $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$.

Elle est donc bijective de $\left] - \frac{\pi}{2}, \frac{\pi}{2} \right[\text{ vers }] \lim_{-\frac{\pi}{2}^+} \tan, \lim_{\frac{\pi}{2}^-} \tan [= \mathbb{R}.$

Définition 7

La fonction tan réalise une bijection de $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\text{sur } \mathbb{R}.$

On appelle arc tangente et on note Arctan : $\mathbb{R} \to \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ sa bijection réciproque. On a :

$$\forall x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, \forall y \in \mathbb{R}, \left(\tan x = y \iff x = \operatorname{Arctan}(y)\right).$$

Formule 10: Quelques valeurs

$$\begin{aligned} &\operatorname{Arccos}\left(1\right) = 0 & \operatorname{Arcsin}\left(0\right) = 0 & \operatorname{Arctan}\left(0\right) = 0 \\ &\operatorname{Arccos}\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{6} & \operatorname{Arcsin}\left(\frac{1}{2}\right) = \frac{\pi}{6} & \operatorname{Arctan}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6} \\ &\operatorname{Arccos}\left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4} & \operatorname{Arcsin}\left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4} & \operatorname{Arctan}\left(1\right) = \frac{\pi}{4} \\ &\operatorname{Arccos}\left(\frac{1}{2}\right) = \frac{\pi}{3} & \operatorname{Arcsin}\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{3} & \operatorname{Arctan}\left(\sqrt{3}\right) = \frac{\pi}{3} \\ &\operatorname{Arccos}\left(0\right) = \frac{\pi}{2} & \operatorname{Arcsin}\left(1\right) = \frac{\pi}{2} & \lim_{x \to +\infty} \operatorname{Arctan}\left(x\right) = \frac{\pi}{2} \end{aligned}$$

6.2 Etude des fonctions

Proposition 22

Arccos $\in \mathcal{C}^0([-1,1])$ et Arcsin $\in \mathcal{C}^0([-1,1])$ $\operatorname{Arccos} \in \mathcal{C}^{\infty}(]-1,1[)$, $\operatorname{Arcsin} \in \mathcal{C}^{\infty}(]-1,1[)$ et $\operatorname{Arctan} \in \mathcal{C}^{\infty}(\mathbb{R})$

$$\forall x \in]-1, 1[\arccos'(x) = -\frac{1}{\sqrt{1-x^2}}, \quad \arcsin'(x) = \frac{1}{\sqrt{1-x^2}}$$
$$\forall x \in \mathbb{R}, \arctan'(x) = \frac{1}{1+x^2}$$

Preuve.

• On admet (pour l'instant) que Arccos et Arcsin sont continues sur [-1,1].

 $\cos: [0,\pi[\to]-1,1[$ est dérivable et : $\forall x \in [0,\pi[,\cos'(x)=-\sin(x)\neq 0.$

Donc, par le théorème de dérivabilité de la fonction réciproque, Arccos est dérivable sur] -1,1[. Soit $x \in]-1,1$ [. On a Arccos $'(x)=-\frac{1}{\sin(\operatorname{Arccos} x)}$.

Soit
$$x \in]-1,1[$$
. On a Arccos' $(x) = -\frac{1}{\sin(\text{Arccos } x)}$.

D'autre part, $\cos^2(\operatorname{Arccos} x) + \sin^2(\operatorname{Arccos} x) = 1$, donc $\sin^2(\operatorname{Arccos} x) = 1 - x^2$ puis $\sin(\operatorname{Arccos} x) = \pm \sqrt{1 - x^2}$.

Comme Arccos $x \in]0, \pi[$, on a $\sin(\operatorname{Arccos} x) \ge 0$ et donc $\sin(\operatorname{Arccos} x) = \sqrt{1 - x^2}$. Finalement, on obtient que Arccos' $(x) = -\frac{1}{\sqrt{1 - x^2}}$.

• Comme $x \mapsto -\frac{1}{\sqrt{1-x^2}}$ est \mathcal{C}^{∞} sur] – 1,1[, alors Arccos est \mathcal{C}^{∞} sur] – 1,1[.

• $\sin: \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\rightarrow] -1, 1$ [est dérivable et : $\forall x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, $\sin'(x) = \cos(x) \neq 0$.

Donc, par le théorème de dérivabilité de la fonction réciproque, Arcsin est dérivable sur] – 1, 1[.

Soit $x \in]-1,1[$. On a $Arcsin'(x) = \frac{1}{cos(Arcsin x)}$

D'autre part, $\cos^2(\operatorname{Arcsin} x) + \sin^2(\operatorname{Arcsin} x) = 1$, donc $\cos^2(\operatorname{Arcsin} x) = 1 - x^2$ puis $\cos(\operatorname{Arcsin} x) = \pm \sqrt{1 - x^2}$.

Comme $\operatorname{Arcsin} x \in \left] - \frac{\pi}{2}, \frac{\pi}{2} \right[$, on a $\cos(\operatorname{Arcsin} x) \ge 0$ et donc $\cos(\operatorname{Arcsin} x) = \sqrt{1 - x^2}$

Finalement, on obtient que Arcsin'(x) = $\frac{1}{\sqrt{1-x^2}}$.

• Comme $x \mapsto \frac{1}{\sqrt{1-x^2}}$ est \mathcal{C}^{∞} sur] – 1,1[, alors Arcsin est \mathcal{C}^{∞} sur] – 1,1[.

• $\tan:]-\frac{\pi}{2}, \frac{\pi}{2}[] \to \mathbb{R}$ est dérivable et : $\forall x \in]-\frac{\pi}{2}, \frac{\pi}{2}[$, $\tan'(x) = 1 + (\tan(x))^2 \neq 0$. Donc, par le théorème de dérivabilité de la fonction réciproque, Arctan est dérivable sur \mathbb{R} . Soit $x \in \mathbb{R}$. On a $\arctan'(x) = \frac{1}{1 + \tan^2(\arctan x)} = \frac{1}{1 + x^2}$.

• Comme $x \mapsto \frac{1}{1+x^2}$ est \mathcal{C}^{∞} sur \mathbb{R} , alors Arctan est \mathcal{C}^{∞} sur \mathbb{R} .

Corollaire 3

Soit I un intervalle de \mathbb{R} .

• Soit $u: I \rightarrow]-1,1[$ dérivable alors :

$$\forall x \in I, (\operatorname{Arccos} \circ u)'(x) = -\frac{u'(x)}{\sqrt{1 - u(x)^2}}, \quad (\operatorname{Arcsin} \circ u)'(x) = \frac{u'(x)}{\sqrt{1 - u(x)^2}}$$

• Soit $u: I \to \mathbb{R}$ dérivable alors :

$$\forall x \in I$$
, $(Arctan \circ u)'(x) = \frac{u'(x)}{1 + u(x)^2}$

Corollaire 4

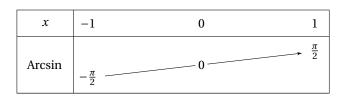
- Arccos est strictement décroissante sur [-1, 1].
- Arcsin est strictement croissante sur [-1,1].
- Arctan est strictement croissante sur \mathbb{R} .

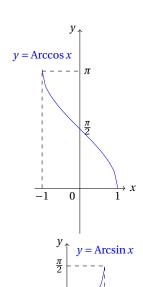
Proposition 23

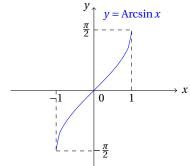
Arcsin et Arctan sont impaires.

Preuve.

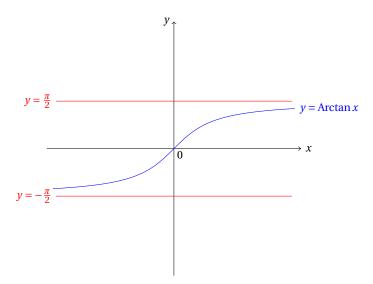
- Soit $y \in [-1,1]$. Posons $x = \operatorname{Arcsin}(y)$. On a $\sin(x) = y$ et $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. On a $\operatorname{Arcsin}(-y) = \operatorname{Arcsin}(-\sin(x))\operatorname{Arcsin}(\sin(-x))$ (car sin est impaire). De plus, $-x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ donc $\operatorname{Arcsin}(-y) = -x$. Finalement, $\operatorname{Arcsin}(-y) = -x = -\operatorname{Arcsin}(y)$. Ainsi, Arcsin est impaire.
- Soit $y \in \mathbb{R}$. Posons $x = \operatorname{Arctan}(y)$. On a $\tan(x) = y$ et $x \in \left] \frac{\pi}{2}, \frac{\pi}{2} \right[$. On a $\operatorname{Arctan}(-y) = \operatorname{Arctan}(-\tan(x)) = \operatorname{Arctan}(\tan(-x))$ (car tan est impaire). De plus, $-x \in \left] - \frac{\pi}{2}, \frac{\pi}{2} \right[$ donc $\operatorname{Arctan}(-y) = -x$. Finalement, $\operatorname{Arctan}(-y) = -x = -\operatorname{Arctan}(y)$. Ainsi, Arctan est impaire.







х	$-\infty$	0	+∞
Arctan	$-\frac{\pi}{2}$	0	$\frac{\pi}{2}$



6.3 Applications

Méthode 1

Pour montrer une formule faisant apparaître des fonctions trigonométriques réciproques, on doit :

- donner le domaine de définition de la formule,
- introduire une fonction f telle que la formule revienne à montrer que cette fonction est nulle,
- étudier le domaine de dérivabilité de f et montrer que f' est nulle,
- \bullet en déduire que f est constante sur chaque intervalle de son domaine de dérivabilité et, si besoin, utiliser un argument de continuité pour montrer que f est constante sur chaque intervalle de son domaine de définition,
- prendre une ou des valeurs pour montrer que la ou les constantes sont nulles.

⇔ Exemple 10: Montrer que:

$$\forall x \in [-1, 1], Arcsin(x) + Arccos(x) = \frac{\pi}{2}.$$

Exemple 11: Montrer que:

$$\forall x \in \mathbb{R}^*$$
, Arctan x + Arctan $\left(\frac{1}{x}\right) = sgn(x) \cdot \frac{\pi}{2}$

où sgn(x) est le signe de x.

Proposition 24

Soit $x \in [-1, 1]$,

$$\cos(\operatorname{Arccos}(x)) = x, \quad \sin(\operatorname{Arccos}(x)) = \sqrt{1 - x^2}, \quad \text{si } x \neq 0, \\ \tan(\operatorname{Arccos}(x)) = \frac{\sqrt{1 - x^2}}{x}$$

$$\cos(\operatorname{Arcsin}(x)) = \sqrt{1 - x^2}, \quad \sin(\operatorname{Arcsin}(x)) = x, \quad \operatorname{si}|x| \neq 1, \\ \tan(\operatorname{Arcsin}(x)) = \frac{x}{\sqrt{1 - x^2}}$$

Soit $x \in \mathbb{R}$,

$$\cos(\operatorname{Arctan}(x)) = \frac{1}{\sqrt{1+x^2}}, \quad \sin(\operatorname{Arctan}(x)) = \frac{x}{\sqrt{1+x^2}}, \quad \tan(\operatorname{Arctan}(x)) = x$$

Les formules pour Arccos et Arcsin ont été prouvées dans la proposition 22. Preuve.

On a:
$$\frac{1}{\cos^2(\operatorname{Arctan} x)} = 1 + \tan^2(\operatorname{Arctan} x) = 1 + x^2$$
.
De plus, comme Arctan $x \in]-\frac{\pi}{2}, \frac{\pi}{2}[$ alors $\cos(\operatorname{Arctan} x) > 0$ donc:

$$\cos(\operatorname{Arctan}(x)) = \frac{1}{\sqrt{1+x^2}}.$$

Ainsi:

$$\sin(\arctan(x)) = \cos(\arctan(x)) \cdot \tan(\arctan x) = \frac{x}{\sqrt{1+x^2}}.$$

⇔ **Exemple 12:** Représenter la fonction :

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto \operatorname{Arcsin}(\sin x)$$

Méthode 2

Pour **résoudre une équation** (E) faisant apparaître des fonctions trigonométriques réciproques, on doit :

- donner le domaine de définition de l'équation (*E*),
- · raisonner par analyse-synthèse,
- · dans l'analyse:
 - appliquer une fonction trigonométrique bien choisie à l'équation (E) pour en déduire une équation (E').
 - raisonner par équivalences pour résoudre (E'),
 - conclure l'analyse,
- dans la synthèse:
 - considérer les solutions obtenues à la fin de l'analyse,
 - remonter les équivalences pour en déduire qu'elles vérifient (E'),
 - étudier des appartenances à des ensembles bien choisis pour vérifier si on peut ou non "enlever" les fonctions trigonométriques introduites dans l'analyse et ainsi vérifier (*E*).

 \Rightarrow **Exemple 13:** Résoudre l'équation suivante, d'inconnue $x \in \mathbb{R}$:

$$Arcsin \frac{4}{5} + Arcsin \frac{5}{13} = Arcsin x.$$

□ Exemple 14: Résoudre l'équation suivante, d'inconnue $x \in \mathbb{R}$:

$$Arcsin x + Arcsin \sqrt{1 - x^2} = \frac{\pi}{2}.$$