Chapitre 6 : Calcul algébrique

I Sommes

1.1 Définitions

Définition 1

Soit $(a_k)_{k \in \mathbb{N}^*}$ une suite de nombres réels.

On définit par récurrence la suite $(S_n)_{n\in\mathbb{N}}$ par : $S_0=0$ et, pour tout $n\in\mathbb{N}$, $S_{n+1}=S_n+a_{n+1}$. On note alors :

$$\forall n \in \mathbb{N}, S_n = \sum_{k=1}^n a_k.$$

On note également, pour tout $N_1, N_2 \in \mathbb{N}^*$, tels que $N_1 \leq N_2$:

$$S_{N_2} - S_{N_1 - 1} = \sum_{k=N_1}^{N_2} a_k.$$

Remarque:

• Ces définitions sont cohérentes avec l'idée intuitive de la sommation :

$$\sum_{k=1}^{n} a_k = a_1 + a_2 + \dots + a_{n-1} + a_n,$$

$$\sum_{k=N_1}^{N_2} a_k = (a_1 + a_2 + \dots + a_{N_2-1} + a_{N_2}) - (a_1 + a_2 + \dots + a_{N_1-2} + a_{N_1-1}) = a_{N_1} + a_{N_1+1} + \dots + a_{N_2-1} + a_{N_2}.$$

- La notation avec des points de suspension n'est pas assez rigoureuse pour être utilisée dans des raisonnements, elle peut être seulement utilisée dans des brouillons.
- La quantité $\sum_{k=1}^{n} a_k$ ne dépend que de n et pas de k. On dit que l'indice de sommation k est muet. Il peut ainsi être remplacé par un autre indice non utilisé. Par exemple :

$$\sum_{k=1}^n a_k = \sum_{j=1}^n a_j.$$

Exemple 1: Soit $(a_k)_{k \in \mathbb{N}^*}$ une suite de nombres réels tels que : $\forall n \in \mathbb{N}^*$, $\sum_{k=1}^n a_k = 2n$.

- Soit $j \in \mathbb{N}^*$, calculer: $\sum_{k=1}^{j} a_k$.
- Soit $n \in \mathbb{N}^*$, calculer: $\sum_{j=1}^n a_j$.
- Soit $n \in \mathbb{N}^*$, calculer: $\sum_{j=1}^{2n} a_j$.
- Soit $n \in \mathbb{N}^*$, calculer: $\sum_{j=n}^{2n} a_j$.

Définition 2

Soit $n \in \mathbb{N}^*$. Soit $I = \{i_k, k \in [1, n]\}$ (les i_k sont 2 à 2 distincts) un ensemble fini à n éléments et $(a_i)_{i \in I}$ une famille de nombres réels indexée par I, on pose : $\sum_{i \in I} a_i = \sum_{k=1}^n a_{i_k}$.

Si $I = \emptyset$, on pose par convention $\sum_{i=1}^{\infty} a_i = 0$.

Remarque:

 Avec cette définition, toutes les sommes indexées par un ensemble fini se ramènent à des sommes indexées par un intervalle d'entiers.

• Soit $(a_k)_{k \in \mathbb{N}^*}$ une suite de nombres réels. Soit $n \in \mathbb{N}$, on a :

$$\sum_{k \in [\![1,n]\!]} a_k = \sum_{k=1}^n a_k.$$

• Soit $(a_k)_{k \in \mathbb{N}^*}$ une suite de nombres réels. Soit $n \in \mathbb{N}$, soit I_n l'ensemble des nombres pairs inférieurs ou égaux à 2n, on a :

$$\sum_{i\in I_n}a_i=\sum_{k=1}^na_{2k}.$$

1.2 Opérations sur les sommes

Proposition 1

Soient $(a_k)_{k\in\mathbb{N}^*}$, $(b_k)_{k\in\mathbb{N}^*}$ deux suites de nombres réels, $\lambda,\mu\in\mathbb{R}$. On a :

$$\forall n \in \mathbb{N}, \; \sum_{k=1}^n (\lambda a_k + \mu b_k) = \lambda \sum_{k=1}^n a_k + \mu \sum_{k=1}^n b_k.$$

Remarque: On dit que la sommation est linéaire.

Preuve.

• Pour
$$n = 0$$
, $\sum_{k=1}^{n} (\lambda a_k + \mu b_k) = 0 = \lambda \sum_{k=1}^{n} a_k + \mu \sum_{k=1}^{n} b_k$.

• Soit $n \in \mathbb{N}$, supposons que $\sum_{k=1}^{n} (\lambda a_k + \mu b_k) = \lambda \sum_{k=1}^{n} a_k + \mu \sum_{k=1}^{n} b_k$.

Alors:
$$\sum_{k=1}^{n+1} (\lambda a_k + \mu b_k) = \sum_{k=1}^{n} (\lambda a_k + \mu b_k) + \lambda a_{n+1} + \mu b_{n+1}.$$

Donc, par hypothèse de récurrence $\sum_{k=1}^{n+1}(\lambda a_k + \mu b_k) = \lambda \sum_{k=1}^n a_k + \mu \sum_{k=1}^n b_k + \lambda a_{n+1} + \mu b_{n+1}.$

Ainsi:
$$\sum_{k=1}^{n+1} (\lambda a_k + \mu b_k) = \lambda \sum_{k=1}^{n+1} a_k + \mu \sum_{k=1}^{n+1} b_k$$
.

• On a donc prouvé le résultat par récurrence

Corollaire 1

Soit *I* un ensemble fini, soient $(a_k)_{k\in I}$, $(b_k)_{k\in I}$ deux familles de nombres réels, $\lambda, \mu \in \mathbb{R}$. On a :

$$\sum_{k \in I} (\lambda a_k + \mu b_k) = \lambda \sum_{k \in I} a_k + \mu \sum_{k \in I} b_k.$$

Proposition 2

Soient $(a_k)_{k\in\mathbb{N}^*}$ une suite de nombres réels, Soient N_1 , N_2 , $N_3\in\mathbb{N}^*$ tels que $N_1\leq N_2\leq N_3$. On a :

$$\sum_{k=N_1}^{N_3} a_k = \sum_{k=N_1}^{N_2} a_k + \sum_{k=N_2+1}^{N_3} a_k.$$

En particulier:

$$\sum_{k=N_1}^{N_3} a_k = a_{N_1} + \sum_{k=N_1+1}^{N_3} a_k.$$

$$\sum_{k=N_1}^{N_3} a_k = \sum_{k=N_1}^{N_3-1} a_k + a_{N_3}.$$

 $\textit{Preuve.} \ \ \mathsf{Posons}: \forall n \in \mathbb{N}, \ S_n = \sum_{k=1}^n a_k. \ \mathsf{On} \ \mathsf{a}: \sum_{k=N_1}^{N_3} a_k = S_{N_3} - S_{N_1-1} = S_{N_3} - S_{N_2} + S_{N_2} - S_{N_1-1} = \sum_{k=N_1}^{N_2} a_k + \sum_{k=N_2+1}^{N_3} a_k..$

Remarque: On parle de découpage ou de regroupement de termes.

Corollaire 2

Soit I un ensemble fini non vide. Si I est la réunion de deux sous-ensembles disjoints I_1 et I_2 , alors :

$$\sum_{k \in I} a_k = \sum_{k \in I_1 \cup I_2} a_k = \sum_{k \in I_1} a_k + \sum_{k \in I_2} a_k$$

Remarque: Ce résultat peut être utilisé pour regrouper (ou découper) selon la parité.

Soit $(a_k)_{k\in\mathbb{N}}$ une suite de nombres réels. Soit $n\in\mathbb{N}$.

En regroupant les termes pairs et les termes impairs, on a :

$$\sum_{k=0}^{n} a_{2k} + \sum_{k=0}^{n} a_{2k+1} = \sum_{k=0}^{2n+1} a_k.$$

Changement d'indice 1.3

Proposition 3

Soient $p, q \in \mathbb{N}$ tels que $p \le q$. Soit $(a_k)_{k \in \mathbb{N}}$ une suite de nombres réels.

• Soit $d \in \mathbb{Z}$ tel que $p + d \ge 0$, on a :

$$\sum_{k=p}^{q} a_k = \sum_{j=p+d}^{q+d} a_{j-d}.$$

On dit qu'on a effectué le changement d'indice j = k + d.

• Soit $d \in \mathbb{N}$ tel que $d - q \ge 0$, on a :

$$\sum_{k=p}^{q} a_k = \sum_{j=d-q}^{d-p} a_{d-j}.$$

On dit qu'on a effectué le changement d'indice j = d - k.

Remarque:

- Dans une somme, si la borne inférieure est strictement plus grande que la borne supérieure, alors la somme est nulle, il faut donc bien penser à mettre les bornes dans le "bon sens".
- Seuls ces deux types de changement d'indices sont autorisés. On ne peut, en particulier, par faire de changement d'indice de la forme j = 2k. Lorsqu'on est tenté de le faire, il faut plutôt penser à un découpage ou à un regroupement.

 \rightleftharpoons **Exemple 2:** Soit $n \in \mathbb{N}^*$, calculer $\sum_{k=0}^{n} (k+1)^3 - \sum_{k=1}^{n} k^3$.

Sommes usuelles

Proposition 4

Soit $n \in \mathbb{N}$,

$$\sum_{k=0}^{n} k = \frac{n(n+1)}{2}.$$

Preuve. On raisonne par récurrence

- Pour n = 0, on a : $\sum_{k=0}^{0} k = 0$ et $\frac{0(0+1)}{2} = 0$. Soit $n \in \mathbb{N}$, supposons $\sum_{k=0}^{n} k = \frac{n(n+1)}{2}$. On a :

$$\sum_{k=0}^{n+1} k = \left(\sum_{k=0}^{n} k\right) + n + 1 = \frac{n(n+1)}{2} + n + 1 = \frac{(n+1)}{2}(n+2)$$

• On a donc prouvé par récurrence que : $\forall n \in \mathbb{N}, \ \sum_{k=0}^{n} k = \frac{n(n+1)}{2}$.

Proposition 5

Soit $n \in \mathbb{N}$,

$$\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$$

- Pour n = 0, on a : $\sum_{k=0}^{0} k^2 = 0$ et $\frac{0(0+1)(2.0+1)}{2} = 0$. Soit $n \in \mathbb{N}$, supposons $\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$. On a :

$$\sum_{k=0}^{n+1} k^2 = \left(\sum_{k=0}^n k^2\right) + (n+1)^2 = \frac{n(n+1)(2n+1)}{6} + (n+1)^2 = \frac{(n+1)(n(2n+1)+6(n+1)}{6} = \frac{(n+1)(2n^2+7n+6)}{6} = \frac{(n+1)(n+2)(2n+3)}{6} = \frac{(n+1)(2n+1)+6(n+1)}{6} = \frac{(n+1)(2n+1)+6(n+1)+6(n+1)}{6} = \frac{(n+1)(2n+1)+6(n+1)+6(n+1)+6(n+1)+6(n+1)}{6} = \frac{(n+1)(2n+1)+6(n+1)$$

• On a donc prouvé par récurrence que : $\forall n \in \mathbb{N}, \ \sum\limits_{k=0}^n k^2 = \frac{n(n+1)(2n+1)}{6}$

Remarque: Dans la preuve, on a utilisé la valeur donnée dans l'énoncé. La méthode pour trouver et prouver la valeur de la somme est basée sur la remarque suivante : on a $\sum_{k=1}^{n+1} k^3 = \sum_{j=0}^{n} (j+1)^3$, par changement d'indice en posant j=k-1. Ainsi, comme l'indice de sommation est muet :

$$\sum_{k=1}^{n+1} k^3 = \sum_{k=0}^{n} (k+1)^3.$$

Proposition 6: Somme d'une progression géométrique

Soient $N_1, N_2 \in \mathbb{N}$ tels que $N_1 \leq N_2$. Soit $q \in \mathbb{R} \setminus \{1\}$. Alors :

$$\sum_{k=N_1}^{N_2} q^k = \frac{q^{N_1} - q^{N_2 + 1}}{1 - q}.$$

Preuve. On raisonne par récurrence pour montrer que : $\forall n \in \mathbb{N}$, $\sum_{k=0}^{n} q^k = \frac{1-q^{n+1}}{1-q}$.

- Pour n = 0, on a: $\sum_{k=0}^{n} q^k = 1 = \frac{1 q^{n+1}}{1 a}$.
- Soit $n \in \mathbb{N}$, supposons $\sum_{k=0}^{n} q^k = \frac{1-q^{n+1}}{1-q}$

$$\sum_{k=0}^{n+1} q^k = \left(\sum_{k=0}^n q^k\right) + q^{n+1} = \frac{1 - q^{n+1}}{1 - q} + q^{n+1} = \frac{1 - q^{n+2}}{1 - q}$$

• On a donc prouvé par récurrence que : $\forall n \in \mathbb{N}$, $\sum_{k=0}^{n} q^k = \frac{1-q^{n+1}}{1-q}$. En effectuant le changement de variable $j = k - N_1$, on a : $\sum_{k=N_1}^{N_2} q^k = \sum_{j=0}^{N_2 - N_1} q^{j+N_1} = q^{N_1} \frac{1-q^{N_2-N_1+1}}{1-q} = \frac{q^{N_1}-q^{N_2+1}}{1-q}$.

Soient $N_1, N_2 \in \mathbb{N}$ tels que $N_1 \leq N_2$. Alors :

$$\sum_{k=N_1}^{N_2} 1 = N_2 - N_1 + 1.$$

En particulier, $\forall n \in \mathbb{N}^*$, $\sum_{k=1}^n 1 = n$ et $\sum_{k=0}^n 1 = n+1$.

Preuve. On raisonne par récurrence pour montrer que : $\forall n \in \mathbb{N}, \sum_{k=0}^{n} 1 = n+1$.

- Pour n = 0, on a: $\sum_{k=0}^{n} 1 = 1 = n + 1$.
- Soit $n \in \mathbb{N}$, supposons $\sum_{n=0}^{n} 1 = n + 1$.

$$\sum_{k=0}^{n+1} 1 = \left(\sum_{k=0}^{n} 1\right) + 1 = (n+1) + 1 = n+2$$

• On a donc prouvé par récurrence que : $\forall n \in \mathbb{N}, \sum_{l=0}^{n} 1 = n+1$.

En effectuant le changement de variable $j=k-N_1$, on a : $\sum_{k=N_1}^{N_2}1=\sum_{j=0}^{N_2-N_1}1=N_2-N_1+1$.

 \Rightarrow **Exemple 3:** Soit $n \in \mathbb{N}^*$, calculer la somme :

$$S_n = 1 \times n + 2 \times (n-1) + \cdots + n \times 1.$$

 \Rightarrow **Exemple 4:** Soit $n \in \mathbb{N}^*$, calculer la somme :

$$S_n = \sum_{k=1}^{2n} (-1)^k k^3.$$

1.5 Sommes télescopiques

Proposition 8 : Sommes télescopiques

Soient $p, q \in \mathbb{N}$ tels que $p \le q$ et $(a_k)_{k \in \mathbb{N}}$ une suite de nombres réels, on a : $\sum_{k=p}^q (a_{k+1} - a_k) = a_{q+1} - a_p$.

Ce type de somme est appelé somme télescopique.

Remarque : On parle de somme télescopique car les termes s'éliminent deux à deux et il ne reste que le premier et le dernier terme :

$$\sum_{k=p}^{q} (a_{k+1} - a_k) = (\underline{a_{p+1}} - a_p) + (\underline{a_{p+2}} - \underline{a_{p+1}}) + (\underline{a_{p+3}} - \underline{a_{p+2}}) + \dots (\underline{a_q} - \underline{a_{q-1}}) + (\underline{a_{q+1}} - \underline{a_q}).$$

On peut adapter le résultat sur les sommes télescopiques à d'autres situations, par exemple :

$$\sum_{k=p}^{q} (a_{k-1} - a_k) =$$

Preuve. On a:

$$\sum_{k=p}^{q}(a_{k+1}-a_k) = \sum_{k=p}^{q}a_{k+1} - \sum_{k=p}^{q}a_k \underset{l=k+1}{=} \sum_{l=p+1}^{q+1}a_l - \sum_{k=p}^{q}a_k = \left(\sum_{k=p+1}^{q}a_k\right) + a_{q+1} - a_p - \left(\sum_{k=p+1}^{q}a_k\right) = a_{q+1} - a_p$$

Exemple 5: Soit $r \in \mathbb{R}$, soit $(u_n)_{n \in \mathbb{N}}$ la suite définie par : $u_0 \in \mathbb{R}$ et : $\forall n \in \mathbb{N}$, $u_{n+1} = u_n + r$. Retrouver la formule donnant le terme général de (u_n) en utilisant une somme télescopique.

1.6 Factorisation

Proposition 9 : Factorisation de $a^n - b^n$ avec $n \in \mathbb{N}^*$

Soient $a, b \in \mathbb{R}$ et $n \in \mathbb{N}^*$, on a :

$$a^{n} - b^{n} = (a - b) \sum_{k=0}^{n-1} a^{k} b^{n-1-k} = (a - b) \sum_{k=0}^{n-1} a^{n-1-k} b^{k}.$$

Preuve.

 \Rightarrow **Exemple 6:** Soit $n \in \mathbb{N}$. Montrer que:

$$6|(7^n-1)$$
 et $7|(3^{2n}-2^n)$.

1.7 Inégalités

Proposition 10

Soit $n \in \mathbb{N}^*$, soient $x_1, \dots, x_n, y_1, \dots, y_n \in \mathbb{R}$. On a :

$$\forall k \in [[1, n]], x_k \le y_k \Longrightarrow \sum_{k=1}^n x_k \le \sum_{k=1}^n y_k.$$

• Pour n = 1. Soient $x_1, y_1 \in \mathbb{R}$ tels que $x_1 \le y_1$.

Alors:
$$\sum_{k=1}^{n} x_k = x_1 \le y_1 = \sum_{k=1}^{n} y_k$$
.
• Soit $n \in \mathbb{N}^*$. Supposons que:

$$\forall x_1, \dots, x_n, y_1, \dots, y_n \in \mathbb{R}, \left(\forall k \in \llbracket 1, n \rrbracket, x_k \le y_k \right) \Longrightarrow \sum_{k=1}^n x_k \le \sum_{k=1}^n y_k.$$

Soient $x_1,\ldots,x_n,x_{n+1},y_1,\ldots,y_n,y_{n+1}\in\mathbb{R}$ tels que $\forall k\in[[1,n+1]]$, $x_k\leq y_k$. Par hypothèse de récurrence : $\sum_{k=1}^n x_k\leq \sum_{k=1}^n y_k$ et comme $x_{n+1}\leq y_{n+1}$, on a :

$$\sum_{k=1}^n x_k + x_{n+1} \leq \sum_{k=1}^n y_k + y_{n+1}.$$

Ainsi:

$$\sum_{k=1}^{n+1} \le \sum_{k=1}^{n+1} n + 1.$$

• D'où la conclusion par récurrence.

 \Rightarrow **Exemple 7:** Soit $n \in \mathbb{N}^*$, soit $(x_1, ..., x_n) \in \mathbb{R}^n$, soit $\alpha \in \mathbb{R}^{+*}$. Montrer que:

$$\left| \frac{1}{\alpha} \sum_{i=1}^{n} x_i \right| \ge \sum_{i=1}^{n} \left\lfloor \frac{x_i}{\alpha} \right\rfloor.$$

Proposition 11 : Généralisation de l'inégalité triangulaire

Soit $n \in \mathbb{N}^*$, soient $x_1, ..., x_n \in \mathbb{R}$. On a :

$$\left| \sum_{k=1}^{n} x_k \right| \le \sum_{k=1}^{n} |x_k|.$$

Preuve.

Alors:
$$\left|\sum_{k=1}^{n} x_k\right| = |x_1| = \sum_{k=1}^{n} |x_k|$$
.
• Soit $n \in \mathbb{N}^*$. Supposons que:

$$\forall x_1,\ldots,x_n,\in\mathbb{R}, \left|\sum_{k=1}^n x_k\right| \leq \sum_{k=1}^n |x_k|.$$

Par hypothèse de récurrence : $\left|\sum_{k=1}^{n} x_k\right| \le \sum_{k=1}^{n} |x_k| \text{donc}$:

$$\left| \sum_{k=1}^{n} x_k \right| + |x_{n+1}| \le \sum_{k=1}^{n} |x_k| + |x_{n+1}|.$$

Or, d'après l'inégalité triangulaire :

$$\left| \sum_{k=1}^{n+1} x_k \right| = \left| \sum_{k=1}^n x_k + x_{n+1} \right| \le \left| \sum_{k=1}^n x_k \right| + |x_{n+1}|.$$

Donc:

$$\left|\sum_{k=1}^{n+1}x_k\right| \leq \sum_{k=1}^{n+1}|x_k|.$$

• D'où la conclusion par récurrence.

⇔ Exemple 8: Montons que :

$$\forall n \in \mathbb{N}^*, \left| \sum_{k=1}^n \frac{\sin(k)}{k2^k} \right| \le 1.$$

II **Produits**

Les résultats sur les produits sont analogues à ceux vus sur les sommes.

2.1 Définitions

Définition 3

Soit $(a_k)_{k \in \mathbb{N}^*}$ une suite de nombres réels.

On définit par récurrence la suite $(P_n)_{n\in\mathbb{N}}$ par : $P_0=1$ et, pour tout $n\in\mathbb{N}$, $P_{n+1}=P_n.a_{n+1}$. On note alors, pour tout $n \in \mathbb{N}$, $P_n = \prod_{k=1}^{n} a_k$.

On note également, pour tout $N_1, N_2 \in \mathbb{N}^*$, tels que $N_1 \leq N_2$, et $P_{N_1-1} \neq 0$, $\frac{P_{N_2}}{P_{N_3-1}} = \prod_{k=N_3}^{N_2} a_k$.

Remarque: Pour les sommes, l'initialisation est 0, alors que pour les produits l'initialisation est 1.

Définition 4

Soit $n \in \mathbb{N}^*$. Soit $I = \{i_k, k \in [1, n]\}$ (les i_k sont 2 à 2 distincts) un ensemble fini à n éléments et $(a_i)_{i \in I}$ une famille de nombres réels indexée par I, on pose : $\prod_{i \in I} a_i = \prod_{k=1}^n a_{i_k}$. Si $I = \emptyset$, on pose par convention $\prod_{i \in I} a_i = 1$.

Exemple 9: Calculer: $\prod_{k=-1000}^{1000} k \ln(1+|k|)$.

2.2 Opérations sur les produits

Proposition 12

Soient $(a_k)_{k\in\mathbb{N}^*}$, $(b_k)_{k\in\mathbb{N}^*}$ deux suites de nombres réels, soient $p,q\in\mathbb{N}$. On a :

$$\forall n \in \mathbb{N}, \prod_{k=1}^{n} (a_k^p.b_k^q) = \left(\prod_{k=1}^{n} a_k\right)^p. \left(\prod_{k=1}^{n} b_k\right)^q.$$

Remarque: On peut donc "sortir" les puissances constantes d'un produit.

Corollaire 3

Soit *I* un ensemble fini, soient $(a_k)_{k\in I}$, $(b_k)_{k\in I}$ deux familles de nombres réels, soient $p,q\in\mathbb{N}$. On a :

$$\prod_{k \in I} (a_k^p.b_k^q) = \left(\prod_{k \in I} a_k\right)^p. \left(\prod_{k \in I} b_k\right)^q.$$

Proposition 13

Soient $(a_k)_{k\in\mathbb{N}^*}$ une suite de nombres réels, Soient N_1 , N_2 , $N_3\in\mathbb{N}^*$ tels que $N_1\leq N_2\leq N_3$. On a :

$$\prod_{k=N_1}^{N_3} a_k = \prod_{k=N_1}^{N_2} a_k \cdot \prod_{k=N_2+1}^{N_3} a_k.$$

En particulier:

$$\prod_{k=N_1}^{N_3} a_k = a_{N_1} \cdot \prod_{k=N_1+1}^{N_3} a_k.$$

$$\prod_{k=N_1}^{N_3} a_k = \left(\prod_{k=N_1}^{N_3-1} a_k\right) . a_{N_3}.$$

Corollaire 4

Soit I un ensemble fini non vide. Si I est la réunion de deux sous-ensembles disjoints I_1 et I_2 , alors :

$$\prod_{k \in I} a_k = \prod_{k \in I_1 \cup I_2} a_k = \prod_{k \in I_1} a_k. \prod_{k \in I_2} a_k$$

2.3 Changement d'indice

Proposition 14

Soient $p, q \in \mathbb{N}$ tels que $p \le q$. Soit $(a_k)_{k \in \mathbb{N}}$ une famille de nombres réels.

• Soit $d \in \mathbb{Z}$ tel que $p + d \ge 0$, on a :

$$\prod_{k=p}^q a_k = \prod_{j=p+d}^{q+d} a_{j-d}.$$

On dit qu'on a effectué le changement d'indice j = k + d.

• Soit $d \in \mathbb{N}$ tel que $d - q \ge 0$, on a :

$$\prod_{k=p}^{q} a_k = \prod_{j=d-q}^{d-p} a_{d-j}.$$

On dit qu'on a effectué le changement d'indice j = d - k

2.4 Produits usuels

Définition 5

$$\forall n \in \mathbb{N}, n! = \prod_{k=1}^{n} k.$$

Remarque: Par convention, on a donc: 0! = 1.

 \Rightarrow **Exemple 10:** Soit $n \in \mathbb{N}^*$, calculer:

$$S_n = \sum_{k=1}^n \frac{k}{(k+1)!}.$$

Proposition 15

Soit $(N_1, N_2) \in \mathbb{N}^2$ tels que $N_1 \leq N_2$. Soit $a \in \mathbb{R}$, alors :

$$\prod_{k=N_1}^{N_2} a = a^{N_2 - N_1 + 1}.$$

Remarque: On peut donc "sortir" les constantes multiplicatives d'un produit en les élevant à la puissance égale au nombre de termes du produit :

$$\prod_{k=N_1}^{N_2}(a.a_k)=a^{N_2-N_1+1}\prod_{k=N_1}^{N_2}a_k.$$

 \Rightarrow **Exemple 11:** Soit $n \in \mathbb{N}$,

• Simplifier : $\prod_{k=1}^{n} (2k)$. • Simplifier : $\prod_{k=1}^{n} (2k+1)$.

2.5 Produits télescopiques

Proposition 16: Produits télescopiques

Soient $p, q \in \mathbb{N}$ tels que $p \le q$ et $(a_k)_{k \in [p,q]}$ une famille de nombres réels non nuls, on a : $\prod_{k=p}^q \frac{a_{k+1}}{a_k} = \frac{a_{q+1}}{a_p}$.

8

Ce type de produit est appelé produit télescopique.

r > **Exemple 12:** Soit $n \in \mathbb{N}$, simplifier : $\prod_{k=1}^{n} \frac{(k+1)^k}{k^{k-1}}$.

III Sommes doubles

Définition 6

Soient Ω une partie finie de \mathbb{N}^2 et $(a_{i,j})_{(i,j)\in\Omega}$ une famille de nombres réels doublement indexée. On note $\sum_{(i,j)\in\Omega}a_{i,j}$ la somme des éléments de cette famille. On dit que cette somme est double.

Proposition 17

Soient $n,p\in\mathbb{N}^*$ et $(a_{i,j})_{(i,j)\in [\![1,n]\!]\times [\![1,p]\!]}$ une famille de nombres réels. Alors :

$$\sum_{(i,j) \in [\![1,n]\!] \times [\![1,p]\!]} a_{i,j} = \sum_{i=1}^n \left(\sum_{j=1}^p a_{i,j} \right) = \sum_{j=1}^p \left(\sum_{i=1}^n a_{i,j} \right)$$

On pourra encore noter : $\sum_{\substack{1 \le i \le n \\ 1 \le j \le p}} a_{i,j}$.

Remarque: Il s'agit d'une somme rectangulaire. Dans ce cas, on peut intervertir les signes de sommation.

	j = 1	j = 2	•••	j = p	
i = 1	$a_{1,1}$	$a_{1,2}$		$a_{1,p}$	$\sum_{j=1}^{p} a_{1,j}$
i=2	$a_{2,1}$	$a_{2,2}$		$a_{2,p}$	$\sum_{j=1}^{p} a_{2,j}$
:	:	÷		:	:
i = n	$a_{n,1}$	$a_{n,2}$		$a_{n,p}$	$\sum_{j=1}^{p} a_{n,j}$
	$\sum_{i=1}^{n} a_{i,1}$	$\sum_{i=1}^{n} a_{i,2}$		$\sum_{i=1}^{n} a_{i,p}$	$\sum_{(i,j)\in[1,n]\times[1,p]}a_{i,j}$

Proposition 18

Soient $n \in \mathbb{N}$ et $(a_{i,j})_{1 \le i \le j \le n}$ une famille de nombres réels.

$$\sum_{1 \le i \le j \le n} a_{i,j} = \sum_{i=1}^{n} \sum_{j=i}^{n} a_{i,j} = \sum_{j=1}^{n} \sum_{i=1}^{j} a_{i,j}$$

Remarque : Il s'agit d'une somme triangulaire. Dans ce cas, on peut intervertir les signes de sommation, mais en modifiant les bornes.

	j = 1	j = 2	• • •	j = n	
i = 1	$a_{1,1}$	$a_{1,2}$	•••	$a_{1,n}$	$\sum_{j=1}^{n} a_{1,j}$
i=2		$a_{2,2}$		$a_{2,n}$	$\sum_{j=2}^{n} a_{2,j}$
:			٠.	:	:
i=n				$a_{n,n}$	$\sum_{j=n}^{n} a_{n,j}$
	$\sum_{i=1}^{1} a_{i,1}$	$\sum_{i=1}^{2} a_{i,2}$		$\sum_{i=1}^{n} a_{i,n}$	$\sum_{1 \le i \le j \le n} a_{i,j}$

Pour se rappeler de la valeur des bornes, on écrit :

$$\left\{ \begin{array}{ll} 1 \leq i \leq n \\ i \leq j \leq n \end{array} \right. \iff \left\{ \begin{array}{ll} 1 \leq i \leq j \\ 1 \leq j \leq n \end{array} \right.$$

r > Exemple 13: Soit $n \in \mathbb{N}^*$, calculer: $\sum_{i=0}^n \sum_{j=i}^n \frac{i}{j+1}$.

 \Rightarrow **Exemple 14:** Soit $n \in \mathbb{N}^*$, calculer les sommes :

$$S_n = \sum_{1 \le i, j \le n} (i+j) \text{ et } T_n = \sum_{1 \le i \le j \le n} (i+j).$$

Arr **Exemple 15:** Soit $n \in \mathbb{N}^*$, calculer: $\sum_{i,j \in [\![1,n]\!]} \min(i,j)$.

IV Coefficients binomiaux et formule du binôme de Newton

4.1 Coefficients binomiaux

Définition 7

Soient $k, n \in \mathbb{N}$, on pose :

$$\binom{n}{k} = \begin{cases} \frac{n!}{k!(n-k)!} & \text{si } k \le n \\ 0 & \text{sinon.} \end{cases}$$

 $\binom{n}{k}$ est appelé coefficient binomial et se lit « k parmi n ».

Proposition 19

Soient $n, k \in \mathbb{N}$ tels que $k \le n$. On a :

$$\binom{n}{k} = \binom{n}{n-k}.$$

Preuve.

$$\binom{n}{n-k} = \frac{n!}{(n-k)!(n-(n-k))!} = \frac{n!}{(n-k)!(k)!} = \binom{n}{k}$$

Proposition 20: Triangle de Pascal

Soient $n \in \mathbb{N}^*$ et $k \in [1, n-1]$. On a:

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Remarque : Cette formule permet de calculer de proche en proche les coefficient binomiaux en construisant le triangle de Pascal.

	p=0	p = 1	p = 2	p = 3		p-1	p
n=0	1						
n = 1		1					
n = 2	1	2	1				
n = 3	1 1	3	3	1			
n = 4	1	4	6	4	1		
$ \vdots \\ n-1 \\ n $:						
n-1	1					$\binom{n-1}{p-1}$	$\binom{n-1}{p}$
n	1					r	$\binom{n}{p}$

Preuve.

Corollaire 5

Soient $n, k \in \mathbb{N}$ tels que $k \le n$. On a :

$$\binom{n}{k} \in \mathbb{N}$$
.

Preuve.

.2 Formule du binôme de Newton

Théorème 1 : Formule du binôme de Newton

Soient $a, b \in \mathbb{R}$ et $n \in \mathbb{N}$. On a

$$(a+b)^{n} = \sum_{k=0}^{n} \binom{n}{k} a^{k} b^{n-k} = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^{k}.$$

Remarque: En écrivant le triangle de Pascal : $(a + b)^5 = a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5$.

Preuve.

Corollaire 6

- $\forall n \in \mathbb{N}, \sum_{k=0}^{n} \binom{n}{k} = 2^n.$
- $\forall n \in \mathbb{N}^* \sum_{k=0}^n \binom{n}{k} (-1)^k = 0.$

Preuve.

- Soit $n \in \mathbb{N}$, on a $\sum_{k=0}^{n} \binom{n}{k} = (1+1)^n = 2^n$.
- Soit $n \in \mathbb{N}^*$, on a $\sum_{k=0}^{\infty} \binom{n}{k} (-1)^k = (-1+1)^n = 0$.

- \Rightarrow Exemple 16: Soit $n \in \mathbb{N}^*$. Calculer $\sum_{k=0}^{n} \binom{n}{k} 3^{-k}$.
- r > Exemple 17: Soit $n \in \mathbb{N}^*$. Calculer $\sum_{j=0}^n \sum_{i=j}^n \binom{i}{j}$.
- Arr Exemple 18: Soit $n \in \mathbb{N}^*$. Calculer $\sum_{k=0}^n k \binom{n}{k}$.
- \Rightarrow **Exemple 19:** Soit $n \in \mathbb{N}^*$. Calculer $\sum_{k=0}^n (-1)^k \binom{2n+1}{k}$.