Chapitre 7 : Nombres complexes

I Ensemble des nombres complexes

1.1 Partie réelle et partie imaginaire

La construction de l'ensemble des nombres complexes n'est pas exigible. On admettra donc le résultat suivant :

Définition-Proposition 1

Il existe un ensemble noté $\mathbb C$:

- possédant un élément noté i tel que $i^2 = -1$,
- dont tout élément s'écrit de manière unique sous la forme z = x + iy avec x et y réels,
- muni d'une addition notée + telle que : si z = x + iy et z' = x' + iy' avec $x, y, x', y' \in \mathbb{R}$, on définit z + z' :

$$z + z' = (x + x') + i(y + y')$$

• muni d'une multiplication notée × ou . telle que : si z = x + iy et z' = x' + iy' avec $x, y, x', y' \in \mathbb{R}$, on définit $z \times z'$ par :

$$z \times z' = (xx' - yy') + i(xy' + x'y)$$

Remarque:

• Soit $x \in \mathbb{R}$, alors x = x + i0 et comme $x, 0 \in \mathbb{R}$, on a donc $x \in \mathbb{C}$. On a donc l'inclusion :

$$\mathbb{R} \subset \mathbb{C}$$
.

- Les nombres réels sont donc des nombres complexes. Dire qu'un nombre est complexe ne signifie donc pas qu'il ne soit pas réel.
- Les opérations définies sur les nombres complexes vérifient les règles connues pour les nombres réelles : si z = x + iy et z' = x' + iy' avec $x, y, x', y' \in \mathbb{R}$, on a :

$$z + z' = x + iy + x' + iy' = (x + x') + i(y + y'),$$

$$z \times z' = (x + iy)(x' + iy') = xx' + ixy' + iyx' + i^2yy' = (xx' - yy') + i(xy' + x'y).$$

Exemple 1: Posons $z_1 = 1 + i$, $z_2 = 2 + 3i$ et $z_3 = 4 - i$, calculer: $(z_1 + z_2)z_3$.

Définition 1

On appelle nombre imaginaire pur, tout nombre complexe de la forme iy avec $y \in \mathbb{R}$.

On note $i\mathbb{R}$ l'ensemble des nombres imaginaires purs.

Définition 2

Soit $z \in \mathbb{C}$, il existe une unique couple $(x, y) \in \mathbb{R}^2$ tel que z = x + iy. Cette écriture est appelée **écriture algébrique** ou **forme algébrique**.

De plus x est appelé partie réelle de z et notée Re(z), y est appelée partie imaginaire de z et notée Im(z).

Remarque : Les nombres réels sont les complexes de partie imaginaire nulle et les nombres imaginaires purs sont les complexes de partie réelle nulle.

Proposition 1

Soient $z_1, z_2 \in \mathbb{C}$. On a:

$$\operatorname{Re}(z_1 + z_2) = \operatorname{Re}(z_1) + \operatorname{Re}(z_2)$$
 et $\operatorname{Im}(z_1 + z_2) = \operatorname{Im}(z_1) + \operatorname{Im}(z_2)$.

 \Box

Preuve. Ce résultat découle directement de la définition.

Corollaire 1

Soient $z_1, \ldots, z_n \in \mathbb{C}$, on a:

$$\operatorname{Re}\left(\sum_{k=1}^{n} z_{k}\right) = \sum_{k=1}^{n} \operatorname{Re}\left(z_{k}\right) \text{ et } \operatorname{Im}\left(\sum_{k=1}^{n} z_{k}\right) = \sum_{k=1}^{n} \operatorname{Im}\left(z_{k}\right).$$

Proposition 2

Soit $z \in \mathbb{C}$, soit $\lambda \in \mathbb{R}$. On a :

$$\operatorname{Re}(\lambda z) = \lambda \operatorname{Re}(z)$$
 et $\operatorname{Im}(\lambda z) = \lambda \operatorname{Im}(z)$.

Remarque: On peut "sortir" les nombres réels des parties réelles et imaginaires.

Preuve. On a:

$$\lambda z = \lambda (\text{Re}(z) + i \text{Im}(z)) = \lambda \text{Re}(z) + i \lambda \text{Im}(z),$$

avec $\lambda \operatorname{Re}(z)$, $\lambda \operatorname{Im}(z) \in \mathbb{R}$ donc:

$$\operatorname{Re}(\lambda z) = \lambda \operatorname{Re}(z) \operatorname{et} \operatorname{Im}(\lambda z) = \lambda \operatorname{Im}(z).$$

Exemple 2: Posons $z_1 = -1 + 3i$ et $z_2 = 4 - i$. Calculer la partie réelle et la partie imaginaire de $z_1^2 - 2z_2$.

1.2 Conjugaison

Définition 3

Soit $z = a + ib \in \mathbb{C}$ avec $(a, b) \in \mathbb{R}^2$. On appelle **conjugué** de z, et on note \overline{z} le nombre complexe $\overline{z} = a - ib$.

Proposition 3

Soient $z, z_1, z_2 \in \mathbb{C}$, on a :

- $\bullet \quad \overline{\overline{z}} = z.$
- $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$.
- $\overline{z_1 \times z_2} = \overline{z_1} \times \overline{z_2}$.
- pour tout $n \in \mathbb{N}$, $\overline{z}^n = \overline{z^n}$.
- si $z_2 \neq 0$, $\left(\frac{z_1}{z_2}\right) = \frac{\overline{z_1}}{\overline{z_2}}$.

Preuve. Posons z = a + ib avec $a, b \in \mathbb{R}$. Posons $z_1 = a_1 + ib_1$ et $z_2 = a_2 + ib_2$ avec $a_1, a_2, b_1, b_2 \in \mathbb{R}$.

- $\overline{\overline{z}} = \overline{a+ib} = \overline{a-ib} = a+ib = z$.
- $\overline{z_1 + z_2} = \overline{(a_1 + ib_1) + (a_2 + ib_2)} = \overline{(a_1 + a_2) + i(b_1 + b_2)} = a_1 + a_2 i(b_1 + b_2) = a_1 ib_1 + a_2 ib_2 = \overline{z_1} + i\overline{z_2}$
- $\overline{z_1 \times z_2} = \overline{(a_1 + ib_1) \times (a_2 + ib_2)} = \overline{(a_1 a_2 b_1 b_2) + i(a_1 b_2 + a_2 b_1)} = a_1 a_2 b_1 b_2 i(a_1 b_2 + a_2 b_1)$ • Si $z_2 \neq 0$ alors, $\overline{z_2} \neq 0$. On a alors : $1 = \overline{z_1} \times \frac{1}{\overline{z_2}} = \overline{z_1}$.

Puis,
$$\overline{\frac{z_1}{z_2}} = \overline{z_1 \times \frac{1}{z_2}} = \overline{z_1} \times \overline{\frac{1}{z_2}} = \overline{z_1} \times \frac{1}{\overline{z_2}} = \overline{z_1}$$

Exemple 3: Posons $z_1 = 1 + i$, $z_2 = 2 + 3i$ et $z_3 = 4 + i$.

Calculer $\overline{z_1^2 - 3z_2 + iz_3}$.

Proposition 4

Soit $z \in \mathbb{C}$, on a:

- Re $(z) = \frac{z + \overline{z}}{2}$
- $\operatorname{Im}(z) = \frac{z \overline{z}}{2i}$
- $z \in i\mathbb{R} \iff \overline{z} = -z$

Preuve. Posons z = a + ib avec $a, b \in \mathbb{R}$.

- On a $z = \operatorname{Re}(z) + i\operatorname{Im}(z)$ et $\overline{z} = \operatorname{Re}(z) i\operatorname{Im}(z)$. Donc $\frac{z + \overline{z}}{2} = \frac{\operatorname{Re}(z) + i\operatorname{Im}(z) + \operatorname{Re}(z) i\operatorname{Im}(z)}{2} = \operatorname{Re}(z)$.

- De même $\frac{z \overline{z}}{2i} = \frac{\operatorname{Re}(z) + i\operatorname{Im}(z) \operatorname{Re}(z) + i\operatorname{Im}(z)}{2i} = \operatorname{Im}(z)$ $z \in \mathbb{R} \iff \operatorname{Im}(z) = 0 \iff \frac{z \overline{z}}{2i} = 0 \iff z \overline{z} = 0 \iff z = \overline{z}$ $z \in i\mathbb{R} \iff \operatorname{Re}(z) = 0 \iff \frac{z + \overline{z}}{2} = 0 \iff z + \overline{z} = 0 \iff z = -\overline{z}$

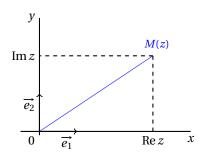
1.3 Affixe

Définition 4

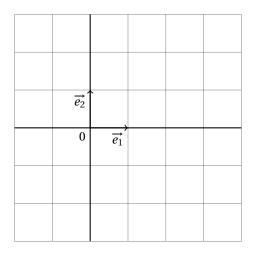
On munit le plan usuel \mathcal{P} d'un repère orthonormé direct $(O, \overrightarrow{e_1}, \overrightarrow{e_2})$.

A tout point M de \mathcal{P} de coordonnées (x, y) (resp. à tout vecteur \overrightarrow{u} tel que $\overrightarrow{u} = x\overrightarrow{e_1} + y\overrightarrow{e_2}$) avec $(x, y) \in \mathbb{R}^2$, on associe le nombre complexe z = x + iy et réciproquement. On dit que z est l'**affixe** de M (resp. \overrightarrow{u}) et M (resp. \overrightarrow{u}) est appelé image de z. On note M(z) (resp. $(\vec{u}(z))$ pour exprimer que z est l'affixe de M (resp. \vec{u}).

П



 \vec{z} **Exemple 4:** On pose $z_1 = 2i$, $z_2 = 1 + i$, $z_3 = -1 - 2i$ et $z_4 = 3$. Représenter les vecteurs \vec{u}_1 (resp. \vec{u}_2 , \vec{u}_3 , \vec{u}_4 , \vec{v}_1 , \vec{v}_2 , \vec{v}_3 , \vec{v}_4) d'affixes z_1 (resp. z_2 , z_3 , z_4 , $\overline{z_1}$, $\overline{z_2}$, $\overline{z_3}$, $\overline{z_4}$).



Remarque:

- L'axe des abscisses correspond aux nombres réels et l'axe des ordonnées aux nombres imaginaires purs.
- Comme le point de coordonnées (x, -y) est le symétrique du point de coordonnées (x, y) par rapport à l'axe des abscisses, la conjugaison s'interprète comme la symétrie par rapport à l'axe des abscisses.

1.4 Calcul algébrique

Les formules suivantes, vues dans \mathbb{R} restent vraies dans \mathbb{C} .

Proposition 5 : Somme d'une progression géométrique

Soient $N_1, N_2 \in \mathbb{N}$ tels que $N_1 \leq N_2$. Soit $q \in \mathbb{C} \setminus \{1\}$. Alors :

$$\sum_{k=N_1}^{N_2} q^k = \frac{q^{N_1} - q^{N_2 + 1}}{1 - q}.$$

Proposition 6 : Factorisation de $a^n - b^n$ **avec** $n \in \mathbb{N}^*$

Soient $a, b \in \mathbb{C}$ et $n \in \mathbb{N}^*$, on a :

$$a^{n} - b^{n} = (a - b) \sum_{k=0}^{n-1} a^{k} b^{n-1-k} = (a - b) \sum_{k=0}^{n-1} a^{n-1-k} b^{k}.$$

Théorème 1 : Formule du binôme de Newton

Soient $a, b \in \mathbb{C}$ et $n \in \mathbb{N}$. On a

$$(a+b)^{n} = \sum_{k=0}^{n} \binom{n}{k} a^{k} b^{n-k} = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^{k}.$$

II Module

2.1 Définition et opérations

Définition 5

On appelle module du nombre complexe z = a + ib avec $(a, b) \in \mathbb{R}^2$ et on note |z| le réel positif (ou nul) défini par

$$|z| = \sqrt{a^2 + b^2}.$$

Remarque : La notion de module prolonge celle de valeur absolue, c'est à dire que le module d'un nombre réel est égal à sa valeur absolue. En effet, si $x \in \mathbb{R}$, alors x = x + i0 et le module de x vaut $\sqrt{x^2 + y^2} = \sqrt{x^2}$ qui est égal à la valeur absolue de x.

Interprétation géométrique du module :

Soit $z \in \mathbb{C}$.

Si M est le point du plan \mathcal{P} d'affixe z alors $|z| = ||\overrightarrow{OM}|| = OM$.

De même, si \overrightarrow{u} est le vecteur du plan d'affixe z alors $|z| = ||\overrightarrow{u}||$

Si A et B sont deux points du plan d'affixes a et b alors $|b-a| = ||\overrightarrow{AB}|| = AB$.

Cercles et disques :

Soient $\omega \in \mathbb{C}$ et $r \in \mathbb{R}_+^*$.

- L'ensemble des points du plan d'affixe z vérifiant $|z-\omega|=r$ est le cercle de centre Ω d'affixe ω et de rayon r.
- L'ensemble des points du plan d'affixe z vérifiant $|z-\omega| < r$ (resp. $|z-\omega| \le r$) est le disque ouvert (resp. fermé) de centre Ω d'affixe ω et de rayon r.

Le disque ouvert ne contient pas les points du cercle contrairement au disque fermé.

Proposition 7

Pour tout $z \in \mathbb{C}$, on a $|z|^2 = z\overline{z}$ et $|z| = |\overline{z}|$.

Preuve.

Méthode 1 : Calcul de la forme algébrique d'un quotient

On cherche à déterminer la forme algébrique du quotient $\frac{z_1}{z_2}$, avec $z_1 \in \mathbb{C}$ et $z_2 \in \mathbb{C}^*$.

On multiple et on divise la fraction par la quantité conjugué du dénominateur :

$$\frac{z_1}{z_2} = \frac{z_1 \overline{z_2}}{z_2 \overline{z_2}} = \frac{z_1 \overline{z_2}}{|z_2|^2}.$$

Comme $|z_2|^2$ est réel, il suffit de développer le numérateur pour obtenir la forme algèbrique.

Exemple 5: Posons $z_1 = 1 + i$ et $z_2 = 2 + 3i$, calculer la forme algébrique de $\frac{z_1}{z_2}$

 \Rightarrow **Exemple 6:** Soit $z \in \mathbb{C} \setminus \{i\}$ tel que |z| = 1. Montrer que $Z = \frac{z+i}{iz+1} \in \mathbb{R}$.

Proposition 8

Soient $z, z_1, z_2 \in \mathbb{C}$, on a :

- $|z_1 z_2| = |z_1| \times |z_2|$
- pour tout $n \in \mathbb{N}$, $|z|^n = |z^n|$
- si $z_2 \neq 0$, $\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$

e. • $|z_1z_2|^2 = z_1z_2\overline{z_1z_2} = z_1z_2\overline{z_1z_2}$ par compatibilité de la conjugaison avec la multiplication. Ainsi, $|z_1z_2|^2 = z_1\overline{z_1}z_2\overline{z_2} = |z_1|^2|z_2|^2$. Or, $|z_1z_2|$, $|z_1|$ et $|z_2|$ sont des réels positif d'où $|z_1z_2| = |z_1||z_2|$. Preuve.

- Par récurrence sur n.
- Si $z_2 \neq 0$ alors, on a: $1 = \left| z_2 \times \frac{1}{z_2} \right| = |z_2| \times \left| \frac{1}{z_2} \right|$. Comme $z_2 \neq 0$, on a $|z_2 \neq 0$ d'où $\left| \frac{1}{z_2} \right| = \frac{1}{|z_2|}$. Enfin, $\left| \frac{z_1}{z_2} \right| = \left| z_1 \times \frac{1}{z_2} \right| = |z_1| \times \left| \frac{1}{z_2} \right| = \frac{|z_1|}{|z_2|}$.
- \Rightarrow **Exemple 7:** Posons $z_1 = \sqrt{3} + i$. Calculer le module de z_1^3 .

2.2 Propriétés

Proposition 9

$$\forall z \in \mathbb{C}, (|z| = 0 \iff z = 0).$$

Preuve. Soit $z = a + ib \in \mathbb{C}$ avec $(a, b) \in \mathbb{R}^2$.

$$|z| = 0$$
 \iff $|z|^2 = 0 \iff a^2 + b^2 = 0 \iff a^2 = 0 \text{ et } b^2 = 0 \text{ car } a^2, b^2 \ge 0$
 \iff $a = 0 \text{ et } b = 0 \iff z = 0$

Proposition 10

 $\forall z \in \mathbb{C}$, $|\text{Re}(z)| \le |z|$ et $|\text{Im}(z)| \le |z|$.

Preuve.

Inégalité triangulaire

Proposition 11 : Inégalité triangulaire

Soient $z_1, z_2 \in \mathbb{C}$, on a:

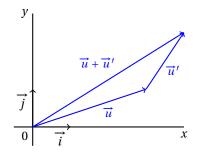
$$|z_1 + z_2| \le |z_1| + |z_2|$$
,

de plus $|z_1 + z_2| = |z_1| + |z_2|$ si et seulement si $z_1 = 0$ ou s'il existe $\lambda \in \mathbb{R}^+$ tel que $z_2 = \lambda z_1$.

Interprétation géométrique :

L'inégalité triangulaire peut donc s'interpréter de la manière suivante : si z et z' représentent les affixes de deux vecteurs \vec{u} et \overrightarrow{u}' alors : $||\overrightarrow{u} + \overrightarrow{u}'|| \le ||\overrightarrow{u}|| + ||\overrightarrow{u}'||$.

Le cas d'égalité dans l'inégalité triangulaire correspond au cas où les vecteurs \overrightarrow{u} et $\overrightarrow{u'}$ sont colinéaires de même sens.



Preuve.

Corollaire 2

Soient $z_1, ..., z_n \in \mathbb{C}$, on a :

$$\left| \sum_{k=1}^n z_k \right| \le \sum_{k=1}^n |z_k|.$$

Corollaire 3 : Deuxième inégalité triangulaire

Soient $z_1, z_2 \in \mathbb{C}$,

$$||z_1| - |z_2|| \le |z_1 - z_2|.$$

Preuve.

Exemple 8: Montrer que :

 $\forall a, b, c \in \mathbb{C}, |1 + a| + |a + b| + |b + c| + |c| \ge 1.$

r > **Exemple 9:** Montrer que : pour tout $n \in \mathbb{N}$, pour tout $z \in \mathbb{C}$ tel que $|z| \neq 1$:

$$\left| \frac{1 - z^{n+1}}{1 - z} \right| \le \frac{1 - |z|^{n+1}}{1 - |z|}.$$

III Nombres complexes de module 1 et trigonométrie

3.1 Cercle trigonométrique

Définition 6

On note $\mathbb U$ l'ensemble des nombres complexes de module 1 :

$$\mathbb{U} = \{ z \in \mathbb{C}, \, |z| = 1 \}.$$

Remarque : U est représenté par le cercle trigonométrique.

Proposition 12

- $\forall z, z' \in \mathbb{U}, z.z' \in \mathbb{U}$
- $\forall z \in \mathbb{U}, z \in \mathbb{U} \Leftrightarrow \overline{z} \in \mathbb{U}$
- $\forall z \in \mathbb{U}, z \neq 0$
- $\forall z \in \mathbb{U}, \frac{1}{z} \in \mathbb{U} \text{ et } \frac{1}{z} = \overline{z}.$

Preuve. Soient $z, z' \in \mathbb{U}$. • |z.z'| = |z| . |z'| = 1.1 = 1 donc $z.z' \in \mathbb{U}$

- $\bullet \ z \in \mathbb{U} \Leftrightarrow |z| = 1 \Leftrightarrow |\overline{z}| = 1 \Leftrightarrow \overline{z} \in \mathbb{U}$
- si z=0 alors |z|=0 donc 1=0 ce qui est absurde. Ainsi $z\neq 0$.
- $\left|\frac{1}{z}\right| = \frac{1}{|z|} = \frac{1}{1} = 1$ donc $\frac{1}{z} \in \mathbb{U}$.

De plus, $z.\overline{z} = |z|^2 = 1$ donc $\frac{1}{z} = \overline{z}$.

Remarque : Si $z, z' \in \mathbb{U}$, en général, $z + z' \notin \mathbb{U}$. Par exemple : $z = 1 \in \mathbb{U}$, $z' = i \in \mathbb{U}$ et $z + z' = 1 + i \notin \mathbb{U}$.

Proposition 13 : Paramétrisation de $\mathbb U$ par les fonctions circulaires

Un nombre complexe z est de module 1 si et seulement si il existe $\theta \in \mathbb{R}$ tel que $\operatorname{Re}(z) = \cos(\theta)$ et $\operatorname{Im}(z) = \sin(\theta)$. Ainsi :

 $\mathbb{U} = \{\cos(\theta) + i\sin(\theta), \theta \in \mathbb{R}\} = \{z \in \mathbb{C}, \exists \theta \in \mathbb{R}, z = \cos(\theta) + i\sin(\theta)\}.$

Preuve.

3.2 Exponentielle d'un nombre imaginaire pur

Définition 7

Soit $\theta \in \mathbb{R}$. On note $e^{i\theta}$ le nombre complexe défini par $e^{i\theta} = \cos\theta + i\sin\theta$

Proposition 14

$$\forall \theta \in \mathbb{R}, \left| e^{i\theta} \right| = 1.$$

Preuve.
$$\left| e^{i\theta} \right| = \sqrt{\cos^2 \theta + \sin^2 \theta} = 1.$$

Proposition 15

L'application $\mathbb{R} \to \mathbb{C}$, $\theta \mapsto e^{i\theta}$ est 2π -périodique, c'est-à-dire :

$$\forall \theta \in \mathbb{R}, e^{i(\theta+2\pi)} = e^{i\theta}.$$

Preuve. cos et sin sont 2π -périodiques.

Proposition 16

Soit $\theta, \varphi \in \mathbb{R}$, on a :

$$e^{i\theta}e^{i\varphi}=e^{i(\theta+\varphi)}$$

Preuve.

$$\begin{split} e^{i\theta}e^{i\varphi} &= (\cos\theta + i\sin\theta).(\cos\varphi + i\sin\varphi) \\ &= \cos\theta\cos\varphi - \sin\theta\sin\varphi + i(\sin\theta\cos\varphi + \cos\theta\sin\varphi) \\ &= \cos(\theta + \varphi) + i\sin(\theta + \varphi) \\ &= e^{i(\theta + \varphi)}. \end{split}$$

Corollaire 4

Soit $\theta \in \mathbb{R}$, on a :

$$\overline{e^{i\theta}} = e^{-i\theta} = \frac{1}{e^{i\theta}}$$

Preuve.

$$\frac{e^{i\theta}}{e^{i\theta}} = \frac{e^{i\theta}}{\cos\theta + i\sin\theta} = \cos\theta - i\sin\theta = \cos(-\theta) + i\sin(-\theta) = e^{-i\theta}. \text{ On en déduit que } e^{i\theta}e^{-i\theta} = e^{i\theta} = 1, \text{ donc } e^{-i\theta} = \frac{1}{e^{i\theta}}.$$

3.3 Egalités d'exponentielles de nombres imaginaires purs

Proposition 17

Soit $\theta \in \mathbb{R}$, on a :

$$e^{i\theta} = 1 \iff \theta \equiv 0$$
 [2 π]

Preuve.

On a les équivalences suivantes :

$$\begin{split} e^{i\theta} &= 1 \iff \cos(\theta) + i\sin(\theta) = 1 \\ &\iff \left\{ \begin{array}{l} \cos(\theta) &= 1 \\ \sin(\theta) &= 0 \end{array} \right. \\ &\iff \left\{ \begin{array}{l} \theta &= 0[2\pi] \\ \theta &= 0[\pi] \end{array} \right. \\ &\iff \theta &= 0 \left[2\pi \right] \\ &\iff \theta &\equiv 0 \left[2\pi \right] \end{split}$$

Corollaire 5

Soient $\theta, \varphi \in \mathbb{R}$, on a:

$$e^{i\theta} = e^{i\varphi} \iff \theta \equiv \varphi \ [2\pi]$$

Preuve.

On a les équivalences suivantes :

$$\begin{split} e^{i\theta} &= e^{i\varphi} \iff e^{i(\theta - \varphi)} = 1 \\ &\iff \theta - \varphi \equiv 0 \; [2\pi] \\ &\iff \theta \equiv \varphi \; [2\pi] \end{split}$$

 \Rightarrow **Exemple 10:** Résoudre l'équation, d'inconnue $x \in \mathbb{R}$:

$$e^{2ix} = i\left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right).$$

3.4 Formules d'Euler et de Moivre

Proposition 18: Formules d'Euler

Pour tout $\theta \in \mathbb{R}$, on a $\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$ et $\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$

 $\frac{e^{i\theta} + e^{-i\theta}}{2} = \frac{e^{i\theta} + \overline{e^{i\theta}}}{2} = \operatorname{Re}(e^{i\theta}) = \cos\theta,$ $\frac{e^{i\theta} - e^{-i\theta}}{2i} = \frac{e^{i\theta} - \overline{e^{i\theta}}}{2i} = \operatorname{Im}(e^{i\theta}) = \sin\theta.$

Proposition 19: Formule de Moivre

Soit $\theta \in \mathbb{R}$ et $n \in \mathbb{Z}$, on a $(e^{i\theta})^n = e^{in\theta}$ ou encore par définition de $e^{i\theta}$:

$$(\cos\theta + i\sin\theta)^n = \cos(n\theta) + i\sin(n\theta)$$

Preuve.

• Raisonnons par récurrence $n \in \mathbb{N}$.

- Pour
$$n = 0$$
 $(e^{i\theta})^0 = 1 = e^{i0}$.

– Soit $n \in \mathbb{N}$. Supposons que $(e^{i\theta})^n = e^{in\theta}$. Alors $(e^{i\theta})^{n+1} = (e^{i\theta})^n e^{i\theta} = e^{in\theta}e^{i\theta}$ (par hypothèse de récurrence).

- On a donc prouvé par récurrence que : $\forall n \in \mathbb{N}$, $(e^{i\theta})^n = e^{in\theta}$. • Soit $n \in \mathbb{Z} \setminus \mathbb{N}$. On a $e^{in\theta} = \frac{1}{e^{-in\theta}} = \frac{1}{(e^{i\theta})^{-n}} = (e^{i\theta})^n$.

Factorisation par l'angle moitié

Méthode 2 : Factorisation par l'angle moitié

Lorsque l'on a une expression de la forme $e^{ia} \pm e^{ib}$, on met en facteur $e^{i\frac{a+b}{2}}$ puis on utilise la formule d'Euler. Cela est en particulier utile pour :

· simplifier des puissances

• déterminer les formules de factorisation de $cos(a) \pm cos(b)$ ou $sin(a) \pm sin(b)$ en prenant la partie réelle ou la partie imaginaire.

L'expression la plus fréquente est : $1 \pm e^{it}$.

⇔ Exemple 11: Soient $t, a, b \in \mathbb{R}$. Factoriser:

- 1. $z_1 = 1 + e^{it}$
- 2. $z_2 = 1 e^{it}$
- 3. $z_3 = \cos(a) + \cos(b)$
- 4. $z_4 = \sin(a) \sin(b)$
- \Rightarrow **Exemple 12:** Soit $n \in \mathbb{N}$, soit $t \in \mathbb{R}$. Calculer:

$$\sum_{k=0}^{n} \cos(kt) \text{ et } \sum_{k=0}^{n} \sin(kt).$$

3.6 Applications des formules de Moivre et d'Euler

Méthode 3: Linéarisation

Pour linéariser une expression trigonométrique de la forme $\cos^k x \sin^l x$ (en combinaison linéaire de termes en $\cos(\alpha x)$ ou $\sin(\beta x)$), on procède comme suit :

- 1. On utilise les formules d'Euler pour exprimer $\cos x$ et $\sin x$ en fonction de e^{ix} et e^{-ix} .
- 2. On développe complètement les puissances.
- 3. On regroupe les termes deux à deux conjugués pour reconnaître des $\cos(\alpha x)$ ou $\sin(\beta x)$.
- \Rightarrow **Exemple 13:** Soit $x \in \mathbb{R}$. Linéariser $\cos^3(x)\sin^2(x)$.

Remarque: La linéarisation permet de calculer des primitive de fonctions de la forme $x \mapsto \cos^k x \sin^l x$.

Méthode 4

Pour transformer cos(nx) ou sin(nx) en un polynôme en cos (ou en sin), on procède comme suit :

- 1. On écrit $\cos(nx) = \text{Re}(e^{inx}) = \text{Re}((e^{ix})^n) = \text{Re}((\cos x + i\sin x)^n)$ grâce à la formule de Moivre.
- 2. On développe la puissance.
- 3. On ne garde que la partie réelle (ou imaginaire dans le cas d'un sinus).
- □ **Exemple 14:** Soit $x ∈ \mathbb{R}$. Exprimer $\cos(4x)$ en fonction de $\cos x$.
- **Exemple 15:** Soit $n \in \mathbb{N}^*$, soient $x, y \in \mathbb{R}$. Calculer la somme suivante :

$$S = \sum_{k=0}^{n} \binom{n}{k} \cos(x + ky).$$

IV Argument d'un nombre complexe non nul

4.1 Définitions

Proposition 20

Soit $z \in \mathbb{C}^*$. On a : $\frac{z}{|z|} \in \mathbb{U}$ et il existe $\theta \in \mathbb{R}$ tel que :

$$z=|z|e^{i\theta}.$$

$$\textit{Preuve.} \ \ \text{On a} \ \left| \frac{z}{|z|} \right| = \frac{|z|}{|z|} = 1 \ \text{donc} \ \frac{z}{|z|} \in \mathbb{U} \ \text{et il existe} \ \theta \in \mathbb{R} \ \text{tel que} \ \frac{z}{|z|} = e^{i\theta}. \ \text{Ainsi} : z = |z|e^{i\theta}.$$

Définition 8 : Forme trigonométrique d'un nombre complexe non nul

Soit $z \in \mathbb{C}^*$

Soient $r \in \mathbb{R}_+^*$ et $\theta \in \mathbb{R}$ tels que $z = re^{i\theta}$.

L'écriture $z = re^{i\theta}$ est appelée forme trigonométrique ou forme exponentielle.

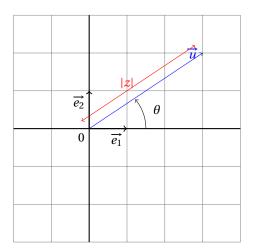
On dit que le réel θ est un argument de z.

Interprétation géométrique de l'argument :

Soit $z \in \mathbb{C}^*$ et θ un argument de z.

Si M a pour affixe z, alors, θ représente une mesure de l'angle orienté $(\overrightarrow{e_1}, \overrightarrow{OM})$.

Si \vec{u} a pour affixe z, alors, θ représente une mesure de l'angle orienté $(\vec{e_1}, \vec{u})$.



Proposition 21

Soit $z \in \mathbb{C}^*$, soient $\theta \in \mathbb{R}$ et $r \in \mathbb{R}_+^*$ tels que $z = re^{i\theta}$. Soient $\theta' \in \mathbb{R}$ et $r' \in \mathbb{R}_+^*$

$$z = r' e^{i\theta'} \quad \Longleftrightarrow \quad \left\{ \begin{array}{l} r' = r \\ \theta' \equiv \theta \; [2\pi] \end{array} \right.$$

Preuve.

Corollaire 6

Soit $z \in \mathbb{C}^*$ soit θ un argument de z, soit $\theta' \in \mathbb{R}$. On a : θ' est un argument de z ssi $\theta' \equiv \theta \mod 2\pi$, c'est-à-dire ssi $\exists k \in \mathbb{Z}, \theta' = \theta + 2k\pi$.

П

Remarque : Si θ est un argument de z, alors $\theta + 2k\pi$, $k \in \mathbb{Z}$ sont des arguments de z. Ainsi, tout nombre complexe non nul admet une infinité d'arguments. On va choisir d'en privilégier un avec la définition suivante.

Définition 9

Soit $z \in \mathbb{C}^*$. On appelle argument principal de z et on note $\operatorname{Arg}(z)$ l'unique argument de z appartenant à $]-\pi,\pi]$.

Méthode 5

Pour déterminer la forme trigonométrique ou l'argument principal de $z \in \mathbb{C}^*$:

- 1. on calcule |z|,
- 2. on factorise z par |z|,
- 3. on cherche à reconnaître des valeurs connues de cos et sin.
- ➡ **Exemple 16:** Déterminer la forme trigonométrique de :
 - 1. $z_1 = 1 + i$
 - 2. $z_2 = -1 i\sqrt{3}$

Méthode 6 : Calcul de puissances

Pour calculer la puissance d'un nombre complexe : z^n avec $z \in \mathbb{C}^*$ et $n \in \mathbb{N}$, on utilise la forme trigonométrique de z et la formule de Moivre. On a : $z = re^{i\theta}$ avec r > 0 et $\theta \in \mathbb{R}$ donc :

$$z^n = r^n e^{in\theta}$$
.

Remarque : Même si θ est l'argument principal de z, cette méthode ne donne pas directement l'argument principal de z^n .

- ➡ **Exemple 17:** Déterminer l'argument principal de :
 - 1. $z_1 = (1+i)^{1000}$
 - 2. $z_2 = (-1 i\sqrt{3})^{500}$

4.2 Opérations sur les arguments

Proposition 22

Soient $z_1 \in \mathbb{C}^*$ et $z_2 \in \mathbb{C}^*$ d'arguments respectifs θ_1 et θ_2 . Soit $n \in \mathbb{Z}$. Alors

- $\overline{z_1}$ est non nul et $-\theta_1$ est un argument de $\overline{z_1}$.
- z_1z_2 est non nul et $\theta_1 + \theta_2$ est un argument de z_1z_2 .
- ¹/_{z₂} est non nul et -θ₂ est un argument de ¹/_{z₂}.

 ²/_{z₂} est non nul et θ₁ θ₂ est un argument de ²/_{z₂}.
- z_1^n est non nul et $n\theta_1$ est un argument de z_1^n .
- $-z_1$ est non nul et $\theta_1 + \pi$ est un argument de $-z_1$.

Preuve. Comme θ_1 est un argument de z_1 , on a $z_1 = |z_1|e^{i\theta_1}$. De même, $z_2 = |z_2|e^{i\theta_2}$.

- Comme $\frac{\sigma_1}{z_1}$ est un argument de z_1 , on a $z_1 = |z_1|e^{i\sigma_1}$. De même, $z_2 = |z_2|e^{it\sigma_2}$.

 On a: $z_1z_2 = |z_1|e^{i\theta_1} = |z_1|e^{-i\theta_1} = |\overline{z_1}|e^{-i\theta_1}$. Ainsi, $-\theta_1$ est un argument de $\overline{z_1}$.

 On a: $z_1z_2 = |z_1|e^{i\theta_1} \times |z_2|e^{i\theta_2} = |z_1||z_2|e^{i(\theta_1+\theta_2)} = |z_1z_2|e^{i(\theta_1+\theta_2)}$ ainsi $\theta_1 + \theta_2$ est un argument de z_1z_2 .

 On a $\frac{1}{z_2} = \frac{1}{|z_2|e^{i\theta_2}} = \frac{1}{|z_2|}e^{-i\theta_2} = \left|\frac{1}{z_2}\right|e^{-i\theta_2}$ ainsi $-\theta_2$ est un argument de $\frac{1}{z_2}$.

 Comme $\frac{z_1}{z_2} \frac{|z_1|e^{i\theta_1}}{|z_2|e^{i\theta_2}} = \frac{|z_1|}{|z_2|}e^{i(\theta_1-\theta_2)} = \left|\frac{z_1}{z_2}\right|e^{i(\theta_2-\theta_1)}$. Ainsi, $\theta_1 \theta_2$ est un argument de $\frac{z_1}{z_2}$.
- $z_1^n = (|z_1|e^{i\theta_1})^n = |z_1|^n (e^{i\theta_1})^n = |z_1^n|e^{in\theta_1}$ ainsi $n\theta_1$ est un argument de z_1^n .
- $-z_1 = -|z_1|e^{i\theta_1} = |z_1|e^{i(\theta_1 + \pi)} = |-z_1|e^{i(\theta_1 + \pi)}$ ainsi $\theta_1 + \pi$ est un argument de $-z_1$.

4.3 Amplitude et phase

Méthode 7: Amplitude et phase

On veut transformer une expression de la forme $a\cos t + b\sin t$, $(a,b) \neq (0,0)$ en $A\cos(t-\varphi)$ où A désigne l'am-

• On pose z = a + ib, comme $z \in \mathbb{C}^*$, il existe $\varphi \in \mathbb{R}$ tel que : $z = |z|e^{i\varphi}$. Donc :

$$a = \sqrt{a^2 + b^2}\cos(\varphi)$$
 et $b = \sqrt{a^2 + b^2}\sin(\varphi)$.

• On a alors:

$$a\cos t + b\sin t = \sqrt{a^2 + b^2}\left(\cos\varphi\cos t + \sin\varphi\sin t\right) = \sqrt{a^2 + b^2}\cos(t - \varphi).$$

Donc $A = \sqrt{a^2 + b^2}$ convient.

Équations algébriques

5.1 Rappels

Proposition 23: Résolution de l'équation du second degré à coefficients réels

Soit $az^2 + bz + c = 0$ une équation d'inconnue $z \in \mathbb{C}$ à coefficients $a, b, c \in \mathbb{R}$ avec $a \neq 0$. On appelle discriminant de l'équation, le nombre réel $\Delta = b^2 - 4ac$.

• Si $\Delta = 0$, l'équation admet une unique solution $z_0 = -\frac{b}{2a}$, appelée racine double et

$$\forall z \in \mathbb{C}, \ az^2 + bz + c = a(z - z_0)^2.$$

• Si $\Delta > 0$, l'équation admet deux solutions réelles distinctes, $z_1 = \frac{-b - \sqrt{\Delta}}{2a}$ et $z_2 = \frac{-b + \sqrt{\Delta}}{2a}$ et

$$\forall z \in \mathbb{C}, \ az^2 + bz + c = a(z - z_1)(z - z_2).$$

• Si $\Delta < 0$, l'équation admet deux solutions non réelles distinctes, $z_1 = \frac{-b - i\sqrt{-\Delta}}{2a}$ et $z_2 = \frac{-b + i\sqrt{-\Delta}}{2a}$ et

$$\forall z \in \mathbb{C}, \ az^2 + bz + c = a(z - z_1)(z - z_2).$$

Preuve. Soit $z \in \mathbb{C}$. On a :

$$az^{2} + bz + c = a\left(z + \frac{b}{a}z + \frac{c}{a}\right) \quad \text{car } a \neq 0$$

$$= a\left(\left(z + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}} + \frac{c}{a}\right)$$

$$= a\left(\left(z + \frac{b}{2a}\right)^{2} - \frac{\Delta}{4a^{2}}\right)$$

• Si $\Delta = 0$, alors:

$$az^2 + bz + c = a\left(z + \frac{b}{2a}\right)^2.$$

Ainsi l'équation admet une racine double $z_0 = -\frac{b}{2a}$ et $az^2 + bz + c = a(z - z_0)^2$.

• Si $\Delta > 0$, alors:

$$az^{2} + bz + c = a\left(\left(z + \frac{b}{2a}\right)^{2} - \left(\frac{\sqrt{\Delta}}{2a}\right)^{2}\right) = a\left(z - \frac{-b + \sqrt{\Delta}}{2a}\right)\left(z - \frac{-b - \sqrt{\Delta}}{2a}\right)$$

Ainsi l'équation admet deux solutions réelles distinctes $z_1 = \frac{-b - \sqrt{\Delta}}{2a}$ et $z_2 = \frac{-b + \sqrt{\Delta}}{2a}$ et $az^2 + bz + c = a(z - z_1)(z - z_2)$.

• Si Δ < 0, alors :

$$az^{2} + bz + c = a\left(\left(z + \frac{b}{2a}\right)^{2} - \left(i\frac{\sqrt{-\Delta}}{2a}\right)^{2}\right) = a\left(z - \frac{-b + i\sqrt{-\Delta}}{2a}\right)\left(z - \frac{-b - i\sqrt{-\Delta}}{2a}\right)$$

Ainsi l'équation admet deux solutions non réelles distinctes $z_1 = \frac{-b - i\sqrt{-\Delta}}{2a}$ et $z_2 = \frac{-b + i\sqrt{-\Delta}}{2a}$ et $az^2 + bz + c = a(z - z_1)(z - z_2)$.

5.2 Racines carrées d'un nombre complexe

Définition 10

On appelle racine carrée d'un nombre complexe z tout nombre complexe u vérifiant $u^2 = z$.

Remarque:

- Si $z \neq 0$, z admet deux racines carrées opposées.
- Dans R⁺, les racines carrées sont réelles, on choisit d'appeler la racine carrée et de noter avec le symbole √ celle qui est positive. Mais, en dehors de R⁺, on ne peut pas parler de la racine carrée mais d'une racine carrée et on ne peut pas utiliser le symbole √.

Méthode 8 : Détermination des racines carrées d'un nombre complexe

Soit $z \in \mathbb{C}^*$.

ullet Si on connaît la forme trigonométrique de z

Si $z = re^{i\theta}$ où r = |z|, ses racines carrées sont $\sqrt{r}e^{i\frac{\theta}{2}}$ et $-\sqrt{r}e^{i\frac{\theta}{2}}$.

ullet Sinon, on utilise la forme algébrique de z

On note z = a + ib avec $(a, b) \in \mathbb{R}^2 \setminus \{(0, 0)\}$ la forme cartésienne de z. Soit $x, y \in \mathbb{R}$.

$$(x+iy)^2 = z \iff \begin{cases} x^2 - y^2 = a & \text{(égalité des parties réelles)} \\ 2xy = b & \text{(égalité des parties imaginaires)} \\ x^2 + y^2 = \sqrt{a^2 + b^2} & \text{(égalité des modules)} \end{cases}$$

On peut alors calculer x^2 et y^2 puis en déduire x et y, les signes relatifs de x et y étant donnés par l'équation 2xy = b.

 \Rightarrow **Exemple 18:** Calculer les racines carrées de $\sqrt{3} + i$ et de -5 + 12i.

5.3 Résolution des équations du second degré

Proposition 24: Résolution de l'équation du second degré

Soit $az^2 + bz + c = 0$ une équation d'inconnue $z \in \mathbb{C}$ à coefficients $a, b, c \in \mathbb{C}$ avec $a \neq 0$. On appelle discriminant de l'équation, le nombre $\Delta = b^2 - 4ac$.

• Si $\Delta = 0$, l'équation admet une unique solution $z_0 = -\frac{b}{2a}$, appelée racine double et

 $\forall z \in \mathbb{C}, \ az^2 + bz + c = a(z - z_0)^2.$ • Si $\Delta \neq 0$, l'équation admet deux solutions distinctes, $z_1 = \frac{-b - \delta}{2a}$ et $z_2 = \frac{-b + \delta}{2a}$, où δ est une racine carrée de Δ et

$$\forall z \in \mathbb{C}, \ az^2 + bz + c = a(z - z_1)(z - z_2).$$

Remarque: Les racines d'une équation du second degré à coefficients complexes ne sont, en général, pas conjuguées.

Preuve.

Arr **Exemple 19:** Résoudre l'équation d'inconnue $z \in \mathbb{C}$:

$$z^2 - (5 - 14i)z - 2(5i + 12) = 0.$$

 \Rightarrow **Exemple 20:** Résoudre l'équation d'inconnue $z \in \mathbb{C}$:

$$z^2 + 2z + 1 - \sqrt{3} - i = 0.$$

Proposition 25: Relations coefficients racines

Soient $a, b, c \in \mathbb{C}$ avec $a \neq 0$. Soient $z_1, z_2 \in \mathbb{C}$. Alors :

 z_1, z_2 sont les solutions (éventuellement confondues) de l'équation $az^2 + bz + c = 0 \iff \begin{cases} z_1 + z_2 = -\frac{b}{a} \\ z_1z_2 = \frac{c}{a} \end{cases}$

we. Supposons que z_1 et z_2 sont les solutions de $az^2 + bz + c = 0$. Notons δ une racine carrée de $\Delta = b^2 - 4ac$. Alors $z_1 = \frac{-b+\delta}{2a}$ et $z_2 = \frac{-b-\delta}{2a}$ (quitte à changer δ en $-\delta$). Ainsi $z_1 + z_2 = -\frac{b}{a}$ et $z_1 z_2 = \frac{(-b+\delta)(-b-\delta)}{4a^2} = \frac{b^2-\delta^2}{4a^2} = \frac{b^2-\Delta}{4a^2} = \frac{c}{a}$. Réciproquement, supposons que $z_1, z_2 \in \mathbb{C}$ vérifient $z_1 + z_2 = -\frac{b}{a}$ et $z_1 z_2 = \frac{c}{a}$.

Ainsi
$$z_1 + z_2 = -\frac{b}{a}$$
 et $z_1 z_2 = \frac{(-b+\delta)(-b-\delta)}{4a^2} = \frac{b^2 - \delta^2}{4a^2} = \frac{b^2 - \Delta}{4a^2} = \frac{c}{a}$.

Soit $z \in \mathbb{C}$, on a alors : $a(z-z_1)(z-z_2) = az^2 - a(z_1+z_2)z + az_1z_2 = az^2 + bz + c$. Ainsi, z_1 et z_2 sont les deux solutions de l'équation $az^2 + bz + c = 0.$

5.4 Factorisation

Proposition 26

Soit *P* une fonction polynomiale à coefficients complexes :

$$\begin{array}{cccc} P\colon & \mathbb{C} & \to & \mathbb{C} \\ & z & \mapsto & \sum_{k=0}^n a_k z^k, \end{array}$$

avec $n \in \mathbb{N}$, $a_1, \ldots, a_n \in \mathbb{C}$.

Soit $a \in \mathbb{C}$ une racine de P, c'est-à-dire tel que P(a) = 0.

Alors, il existe une fonction polynomiale à coefficients complexes Q telle que :

$$\forall z \in \mathbb{C}, P(z) = (z - a)Q(z).$$

Preuve.

 \Rightarrow **Exemple 21:** Résoudre l'équation d'inconnue $z \in \mathbb{C}$:

$$z^{3} + (1-i)z^{2} + (-1-4i)z - 3 + i = 0.$$

On commencera par montrer que *i* est racine de cette équation.

5.5 Suites récurrentes linéaires d'ordre 2

Proposition 27

On pose $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

Soient $a \in \mathbb{R}$ ou \mathbb{C} , $b \in \mathbb{R}^*$ ou \mathbb{C}^* . On considère la relation de récurrence linéaire d'ordre 2 :

$$\forall n \in \mathbb{N}, u_{n+2} = au_{n+1} + bu_n.$$
 (*)

L'équation $r^2 - ar - b = 0$ est appelée équation caractéristique.

 Si l'équation caractéristique admet deux solutions distinctes r₁, r₂ ∈ K, les suites vérifiant (*) sont de la forme :

$$\forall n \in \mathbb{N}, u_n = \lambda r_1^n + \mu r_2^n, \quad \lambda, \mu \in \mathbb{K}.$$

• Si l'équation caractéristique admet une solution double *r* ∈ K, les suites vérifiant (*) sont de la forme :

$$\forall n \in \mathbb{N}, u_n = (\lambda + \mu n)r^n, \quad \lambda, \mu \in \mathbb{K}.$$

Preuve. La preuve est analogue à celle vue pour les suites réelles.

Remarque: Les constantes sont dans l'ensemble qui correspond aux racines et pas aux coefficients.

Exemple 22: On pose : $u_0 = 1$, $u_1 = 0$ et $\forall n \in \mathbb{N}$, $u_{n+2} = -u_n$.

Déterminer le terme général de la suite (u_n) .

VI Racines n-ièmes

6.1 Racines n-ièmes de l'unité

Définition 11

Soit $n \in \mathbb{N}^*$. On appelle racine n-ième de l'unité tout nombre complexe z vérifiant $z^n = 1$. On note \mathbb{U}_n l'ensemble des racines n-ièmes de l'unité.

Proposition 28

$$\forall n \in \mathbb{N}^*, \mathbb{U}_n \subset \mathbb{U}.$$

Preuve.

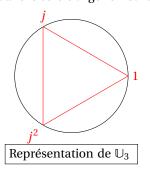
Soit $z \in \mathbb{U}_n$, alors $z^n = 1$ donc $|z|^n = 1$. Or $|z| \in \mathbb{R}^+$ donc |z| = 1. Ainsi $z \in \mathbb{U}$.

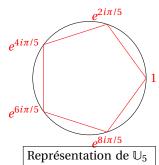
Proposition 29

Soit $n \in \mathbb{N}^*$. \mathbb{U}_n est l'ensemble à n éléments :

$$\mathbb{U}_n = \left\{ e^{2ik\pi/n}, k \in [0, n-1] \right\}.$$

Remarque : Les points du plan complexe dont les affixes sont les racines n-ièmes de l'unité forment un polygone régulier à n côtés inscrit dans le cercle trigonométrique.





Les points en question sont tous situés sur le cercle trigonométrique et l'angle au centre formé par deux points consécutifs sur le cercle vaut $\frac{2\pi}{n}$.

Proposition 30

Soit $n \ge 2$, on a:

$$\sum_{k=0}^{n-1} e^{2ik\pi/n} = 0.$$

Preuve.

Exemple 23: Soit $n \in \mathbb{N}^*$. Calculer le produit des racines n-ièmes de l'unité.

6.2 Racines *n*-ièmes d'un nombre complexe

Définition 12

Soient $a \in \mathbb{C}^*$ et $n \in \mathbb{N}^*$, on appelle racine n-ième de a tout nombre complexe z vérifiant $z^n = a$.

Méthode 9 : Détermination de racines

Pour résoudre une équation du type $z^n = a$ avec $a \in \mathbb{C}^*$, on doit déterminer la forme trigonométrique de a: $a = |a|e^{i\theta}$ où $\theta \in \mathbb{R}$ puis on écrit :

$$z^{n} = a \iff \frac{z^{n}}{a} = 1$$

$$\iff \left(\frac{z}{|a|^{1/n}e^{i\theta/n}}\right)^{n} = 1$$

$$\iff \frac{z}{|a|^{1/n}e^{i\theta/n}} \in \mathbb{U}_{n}$$

$$\iff \exists k \in [0, n-1], \frac{z}{|a|^{1/n}e^{i\theta/n}} = e^{2ik\pi/n}$$

$$\iff \exists k \in [0, n-1], z = |a|^{1/n}e^{i(\theta/n+2ik\pi/n)}$$

Remarque:

- Comme pour la racine carrée, on n'écrit pas le symbole $\sqrt[n]{}$.
- Un nombre complexe non nul admet *n* racines *n*-ièmes distinctes.
- \Rightarrow **Exemple 24:** Déterminer les racines 5-ièmes de -2+2i.
- Arr **Exemple 25:** Résoudre l'équation d'inconnue $z \in \mathbb{C}$:

$$z^6 - 2iz^3 - 2 = 0$$
.

Exemple 26: Soit $n \in \mathbb{N}^*$. Résoudre l'équation d'inconnue $z \in \mathbb{C}$:

$$z^n + 1 = 0$$
.

VII Exponentielle complexe

Définition 13

Pour tout $z \in \mathbb{C}$, on appelle exponentielle de z et on note e^z ou $\exp(z)$ le nombre complexe défini par :

$$e^z = e^{\operatorname{Re} z} e^{i \operatorname{Im} z}$$

Proposition 31

Soient $z, z' \in \mathbb{C}$ et $n \in \mathbb{Z}$. On a :

- $|\exp(z)| = e^{\text{Re }z}$ et Im z est un argument de $\exp(z)$.
- $\exp(z+z') = \exp(z) \exp(z')$.
- $\bullet \quad \frac{1}{e^z} = e^{-z}$
- $\bullet \quad \frac{e^z}{e^{z'}} = e^{z-z'}$
- $\bullet \ (e^z)^n = e^{nz}.$
- $\exp(z) = \exp(z') \iff z z' \in 2i\pi\mathbb{Z} \iff \exists k \in \mathbb{Z}, z z' = 2i\pi k$

Preuve.

Méthode 10: Equation exponentielle

Pour résoudre une équation du type $e^z = a$ avec $a \in \mathbb{C}^*$, on doit déterminer la forme trigonométrique de a: $a = |a|e^{i\theta}$ où $\theta \in \mathbb{R}$ puis on écrit :

$$\begin{aligned} e^z &= a &\iff e^z &= |a|e^{i\theta} \\ &\iff e^z &= e^{\ln|a|+i\theta} \\ &\iff \exists k \in \mathbb{Z}, z &= \ln|a|+i\theta+2ik\pi \end{aligned}$$

 \triangleleft **Exemple 27:** Résoudre les équations d'inconnue $z \in \mathbb{C}$:

- 1. $e^z = -1$
- 2. $e^z = 1 + i$
- 3. $e^z = 2$

VIII Dérivation d'une fonction complexe d'une variable réelle

8.1 Définition

Dans toute la suite, I désigne un intervalle de \mathbb{R} et $f:I\longrightarrow \mathbb{C}$ une fonction à valeurs complexes.

Définition 14

On définit la partie réelle de f notée ${\rm Re}\,(f)$ et la partie imaginaire de f notée ${\rm Im}\,(f)$ par :

- $\operatorname{Re}(f): I \to \mathbb{R}$
 - $x \mapsto \operatorname{Re}(f(x))$
- $\operatorname{Im}(f): I \to \mathbb{R}$
 - $x \mapsto \operatorname{Im}(f(x))$

Remarque : Les propriétés de la fonction $f: I \to \mathbb{C}$ se ramènent alors aux propriétés des fonctions $\operatorname{Re}(f): I \to \mathbb{R}$ et $\operatorname{Im}(f): I \to \mathbb{R}$.

Définition 15

f est continue sur I si et seulement si Re(f) et Im(f) le sont.

Définition 16

Remarque: On a ainsi: $\operatorname{Re}(f') = (Re(f))'$ et $\operatorname{Im}(f') = (\operatorname{Im}(f))'$

Proposition 32: Opérations sur les fonctions dérivables

Soient $f,g:I\to\mathbb{C}$ deux fonctions dérivables sur I et $(\lambda,\mu)\in\mathbb{C}^2$. Alors $(\lambda f+\mu g),fg$ sont dérivables sur I. De plus, si g ne s'annule pas sur I, $\frac{f}{g}$ est dérivable sur I et on a :

$$(\lambda f + \mu g)' = \lambda f' + \mu g' \qquad \qquad (fg)' = f'g + fg' \qquad \qquad \left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

Remarque: Ces formules sont semblables à celle concernant les fonctions à valeurs réelles.

8.2 Exponentielle complexe

Proposition 33

Soit $\varphi:I\longrightarrow \mathbb{C}$ une fonction dérivable sur I. Alors, la fonction $\exp\circ\varphi\colon I\to \mathbb{C}$ est dérivable sur I et on a :

$$\forall x \in I$$
, $(\exp \circ \varphi)'(x) = \varphi'(x)e^{\varphi(x)}$

Preuve.

On pose $\varphi_1 = \text{Re}(\varphi)$ et $\varphi_2 = \text{Im}(\varphi)$.

Soit $t \in I$, $(\exp \circ \varphi)(t) = e^{\varphi(t)} = e^{\varphi_1(t) + i\varphi_2(t)} = e^{\varphi_1(t)} (\cos(\varphi_2(t)) + i\sin(\varphi_2(t)))$. $\exp \circ \varphi$ est dérivable sur I par compositions, produit et somme de fonctions dérivables sur I. Soit $t \in I$, en utilisant les formules de dérivation usuelles, on obtient :

$$\begin{split} (\exp\circ\varphi)'(t) &= \varphi_1'(t) \exp(\varphi_1(t)) \cdot (\cos(\varphi_2(t)) + i \sin(\varphi_2(t))) + \exp(\varphi_1(t)) \cdot (-\varphi_2'(t) \sin(\varphi_2(t)) + \varphi_2'(t) i \cos(\varphi_2(t))) \\ &= (\varphi_1'(t) + i \varphi_2'(t)) \exp(\varphi_1(t)) \cdot (\cos(\varphi_2(t)) + i \sin(\varphi_2(t))) = \varphi'(t) \exp(\varphi(t)). \end{split}$$

Corollaire 7

Soit $a \in \mathbb{C}$, la fonction $\begin{pmatrix} \mathbb{R} & \to & \mathbb{C} \\ x & \mapsto & e^{ax} \end{pmatrix}$ est dérivable et sa dérivée est : $\begin{pmatrix} \mathbb{R} & \to & \mathbb{C} \\ x & \mapsto & ae^{ax} \end{pmatrix}$.

Arr Exemple 28: Soit $n \in \mathbb{N}^*$, calculer les dérivées n-ièmes de cos et sin.

IX Interprétation géométrique des nombres complexes

9.1 Symétrie

Proposition 34

L'application $\begin{array}{ccc} \mathbb{C} & \rightarrow & \mathbb{C} \\ z & \mapsto & \overline{z} \end{array}$ représente

la symétrie par rapport à l'axe des abscisses.

 $\begin{array}{ll} \textit{Preuve.} & \text{Soit } M, M' \in \mathcal{P} \text{ d'affixes respectives } z = a + ib, \ z' = a' + ib' \text{ avec } a, b, a', b' \in \mathbb{R}. \ \text{Notons } S : \mathcal{P} \rightarrow \mathcal{P} \text{ la symétrie par rapport à l'axe des abscisses et} \\ & \begin{array}{ll} s : \mathbb{C} & \rightarrow & \mathbb{C} \\ : z & \mapsto & \overline{z} \end{array}. \end{array}$

On a:

$$M' = S(M) \iff \begin{cases} a' = a \\ b' = -b \end{cases}$$

$$\iff a + ib = a' + ib'$$

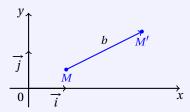
$$\iff z' = \overline{z}$$

$$\iff z' = s(z)$$

9.2 Translations

Proposition 35

Soit \overrightarrow{u} un vecteur du plan d'affixe $b \in \mathbb{C}$. L'application $\begin{matrix} \mathbb{C} & \to & \mathbb{C} \\ z & \mapsto & z+b \end{matrix}$ représente la translation de vecteur \overrightarrow{u} .



Preuve. Soit $M, M' \in \mathcal{P}$ d'affixes respectives z, z'. Notons $T_{\overrightarrow{u}} : \mathcal{P} \to \mathcal{P}$ la translation de vecteur \overrightarrow{u} et cond b : c

$$M' = T_{\overrightarrow{u}}(M) \iff \overrightarrow{MM'} = \overrightarrow{u} \iff z' - z = b \iff z' = z + b \iff z' = t_b(z)$$

9.3 Rotations et homothéties

Proposition 36

 $\begin{array}{lll} \operatorname{Soit} \theta \in \mathbb{R}. \\ \operatorname{L'application} & \mathbb{C} & \to & \mathbb{C} \\ z & \mapsto & e^{i\theta}z & \operatorname{repr\acute{e}sente} \\ \operatorname{la rotation} \operatorname{de centre} O \operatorname{et} \operatorname{d'angle} \theta. \end{array}$



Preuve. Soit $M, M' \in \mathcal{P}$ d'affixes respectives z, z'. Notons $R_{\theta} : \mathcal{P} \to \mathcal{P}$ la rotation d'angle θ et $\begin{cases} r_{\theta} : \mathbb{C} \to \mathbb{C} \\ : z \mapsto ze^{i\theta} \end{cases}$.

• Cas 1: si $z \neq 0$ i.e $M \neq O$:

$$M' = R_{\theta}(M) \iff \begin{cases} OM = OM' \\ (\overrightarrow{OM}, \overrightarrow{OM'}) \equiv \theta[2\pi] \end{cases} \iff \begin{cases} |z| = |z'| \\ \operatorname{Arg}\left(\frac{z'}{z}\right) \equiv \theta[2\pi] \end{cases} \iff \begin{cases} \left|\frac{z'}{z}\right| = 1 \\ \operatorname{Arg}\left(\frac{z'}{z}\right) \equiv \theta[2\pi] \end{cases}$$
$$\iff \frac{z'}{z} = e^{i\theta} \iff z' = ze^{i\theta} \iff z' = r_{\theta}(z)$$

• Cas 2 : si z = 0 i.e M = O :

$$M' = R_{\theta}(M) \iff M' = M = O \iff z' = z = 0 \iff z' = r_{\theta}(z)$$

Définition 17

L'homothétie de centre $\Omega \in \mathcal{P}$ et de rapport $\lambda \in \mathbb{R}^*$ est l'application du plan dans lui même qui, à tout point M, associe le point M' tel que $\overrightarrow{\Omega M'} = \lambda \overrightarrow{\Omega M}$.

Proposition 37

Soit $\lambda \in \mathbb{R}^*$. L'application $\begin{array}{ccc} \mathbb{C} & \to & \mathbb{C} \\ z & \mapsto & \lambda z \end{array}$ représente l'homothétie de centre O et de rapport λ .

Preuve. Soit $M, M' \in \mathcal{P}$ d'affixes respectives z, z'.

Notons $H_{\lambda}: \mathcal{P} \to \mathcal{P}$ l'homothétie de centre O et de rapport λ et $\begin{pmatrix} h_{\lambda}: \mathbb{C} & \to & \mathbb{C} \\ :z & \mapsto & \lambda z \end{pmatrix}$.

$$M' = H_{\lambda}(M) \iff \overrightarrow{OM'} = \lambda \overrightarrow{OM} \iff z' = \lambda z \iff z' = h_{\lambda} z$$

Corollaire 8

Soit $a \in \mathbb{C}^*$.

représente la composée de l'homothétie de centre O et rapport |a| avec la rotation de centre O et d'angle Arg(a).

Ces applications sont appelées des similitudes directes.

Remarque: Ces applications sont appelées des similitudes directes.

9.4 Alignement et orthogonalité

Proposition 38

Soit $\overrightarrow{u_1}$ et $\overrightarrow{u_2}$ deux vecteurs du plan non nuls d'affixes respectives z_1 et z_2 . Une mesure de l'angle $(\overrightarrow{u_1}, \overrightarrow{u_2})$ est donnée par un argument de $\frac{z_2}{z}$.

- Par suite : $\overrightarrow{u_1}$ et $\overrightarrow{u_2}$ sont colinéaires si et seulement si $\frac{z_2}{z_1} \in \mathbb{R}$.
 - $\overrightarrow{u_1}$ et $\overrightarrow{u_2}$ sont orthogonaux si et seulement si $\frac{z_2}{z_1} \in i\mathbb{R}$.

Preuve. On munit le plan usuel \mathcal{P} d'un repère orthonormé direct $(O, \overrightarrow{e_1}, \overrightarrow{e_2})$.

Soit θ_1 (resp. θ_2) un argument de z_1 (resp. z_2).

On a $\theta_1 \equiv (\overrightarrow{e_1}, \overrightarrow{u_1})[2\pi]$ et $\theta_2 \equiv (\overrightarrow{e_1}, \overrightarrow{u_2})[2\pi]$. Or, $(\overrightarrow{u_1}, \overrightarrow{u_2}) = (\overrightarrow{e_1}, \overrightarrow{u_2}) - (\overrightarrow{e_1}, \overrightarrow{u_1})$ donc $(\overrightarrow{u_1}, \overrightarrow{u_2}) \equiv \theta_2 - \theta_1[2\pi]$. Ainsi, $\theta_2 - \theta_1$ qui est un argument de $\frac{z_2}{z_1}$ est une aussi mesure l'angle $(\overrightarrow{u_1}, \overrightarrow{u_2})$.

- $\overrightarrow{u_1}$ et $\overrightarrow{u_2}$ sont colinéaires si et seulement si $(\overrightarrow{u_1}, \overrightarrow{u_2}) \equiv 0[\pi]$ si et seulement si $\theta_2 \theta_1 \equiv 0[\pi]$ si et seulement si $\frac{z_2}{z_1} \in \mathbb{R}$
- De même, $\overrightarrow{u_1}$ et $\overrightarrow{u_2}$ sont orthogonaux si et seulement si $(\overrightarrow{u_1}, \overrightarrow{u_2}) \equiv \frac{\pi}{2}[\pi]$ si et seulement si $\theta_2 \theta_1 \equiv \frac{\pi}{2}[\pi]$ si et seulement si $\frac{z_2}{z_1} \in i\mathbb{R}$

Corollaire 9

Soient A, B et C trois points du plan, deux à deux distincts et d'affixes respectives z_A , z_B et z_C . Une mesure de Soient \overrightarrow{A} , \overrightarrow{B} et \overrightarrow{C} trois points au pian, acua a $\overrightarrow{z_C}$ - $\overrightarrow{z_A}$. Par suite : l'angle $(\overrightarrow{AB}, \overrightarrow{AC})$ est donnée par un argument de $\frac{z_C - z_A}{z_B - z_A}$. Par suite :

- A, B et C sont alignés si et seulement si ^{z_C-z_A}/_{z_B-z_A} ∈ ℝ.
 ABC est rectangle en A si et seulement si ^{z_C-z_A}/_{z_B-z_A} ∈ iℝ.
- \Rightarrow **Exemple 29:** Déterminer les nombres $z \in \mathbb{C}$ tels que les points d'affixes 1, z et z^2 forment un triangle rectangle.