Exemples du chapitre 1 : Rudiments de logique, généralités et révisions sur les suites et les fonctions

- 1. Montrer que : $\forall (a, b) \in \mathbb{R}^2$, $2ab \le a^2 + b^2$.
- 2. Montrer que : $\forall (x, y) \in (\mathbb{R}^+)^2$, $2\sqrt{xy} \le x + y$.
- \Rightarrow **Exemple 2:** Soit *n* un entier naturel pair. Montrer que n^2 est pair.
- \Rightarrow **Exemple 3:** Montrer que : $\forall x \in \mathbb{Q}, -2x + \frac{3}{2} \in \mathbb{Q}$.

1. Montrer que la proposition suivante est vraie :

$$\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z}, x \geq y.$$

2. Montrer que la proposition suivante, obtenue en échangeant les quantificateurs, est fausse :

$$\exists y \in \mathbb{Z}, \forall x \in \mathbb{Z}, x \geq y.$$

- **Exemple 5:** Soit $n \in \mathbb{Z}$ tel que n^2 soit pair. Montrer que n est pair.
- \Rightarrow **Exemple 6:** Montrer que $\sqrt{2}$ est irrationnel. Ce résultat est supposé connu et peut être utilisé.
- \Rightarrow **Exemple 7:** Soit f une fonction continue sur [0,1] telle que $f^2 = f$. Montrer que f = 0 ou f = 1.
- \Rightarrow **Exemple 8:** Soit $x \in \mathbb{R}$. Montrer que:

$$x \ge 0 \Longrightarrow x^2 + x \ge 0$$
.

On utilisera trois méthodes de raisonnement.

 \triangleleft **Exemple 9:** Soient $a, b, c, d \in \mathbb{R}$ tels que $a \le b$ et $c \le d$.

Montrer que:

$$a + c = b + d \Rightarrow a = b \text{ et } c = d.$$

 \Rightarrow **Exemple 10:** Soient $a, b \in \mathbb{R}$, montrer que :

$$(\forall x \in \mathbb{R}, ax + be^x = 0) \Leftrightarrow a = b = 0.$$

ightharpoonup **Exemple 11:** On considère la suite (u_n) définie par :

$$u_0 > 0$$
 et $\forall n \in \mathbb{N}, u_{n+1} = \sqrt{u_n^2 + 1}$.

Etudier la monotonie de (u_n) .

Exemple 12: Résoudre le système d'inconnues $x, y, z \in \mathbb{R}$:

(S)
$$\begin{cases} x+y-z &= 1\\ 2x+y+z &= 4\\ x-3y+2z &= 0 \end{cases}$$

 \Rightarrow **Exemple 13:** Résoudre le système d'inconnues $x, y, z \in \mathbb{R}$:

(S)
$$\begin{cases} x + y + 3z = 5 \\ x - y - z = 1 \\ x + z = 3 \end{cases}$$

Exemple 14: Soient $a, b \in \mathbb{R}$, résoudre le système d'inconnues $x, y \in \mathbb{R}$:

$$(S) \left\{ \begin{array}{rcl} x + 2y & = & 1 \\ ax + 3y & = & b \end{array} \right.$$

Arr **Exemple 15:** Soit $a \in \mathbb{R}$, résoudre le système d'inconnues $x, y, z \in \mathbb{R}$:

(S)
$$\begin{cases} 2x + y - 3z = a \\ 3x + 2y + z = a + 3 \\ 7x + 4y - 5z = 2a + 5 \end{cases}$$

⇔ Exemple 16: Montrer que:

$$\forall n \in \mathbb{N}, \exists k \in \mathbb{N}, n^3 + 5n = 6k.$$

➡ **Exemple 17:** On pose:

$$u_0 = 5$$
, $\forall n \in \mathbb{N}$, $u_{n+1} = 2u_n - (n+1)$, $\forall n \in \mathbb{N}$, $v_n = u_n - n - 2$.

Déterminer le terme général de la suite (u_n) .

 \Rightarrow **Exemple 18:** On pose : $u_0 = 1$ et $\forall n \in \mathbb{N}$, $u_{n+1} = -u_n + 1$.

Déterminer le terme général de la suite (u_n) .

Exemple 19: On pose : $u_0 = 1$, $u_1 = 2$ et $\forall n \in \mathbb{N}$, $u_{n+2} = \frac{u_{n+1}^2}{u_n}$.

Montrer que : $\forall n \in \mathbb{N}$, $u_n = 2^n$.

Exemple 20: On pose : $u_0 = 0$, $u_1 = 3$, $u_2 = -12$ et $\forall n \in \mathbb{N}$, $u_{n+3} = 2u_{n+2} - u_n$.

Montrer que pour tout $n \in \mathbb{N}$, u_n est un entier relatif multiple de 3.

 $\Rightarrow \textbf{Exemple 21:} \ \, \text{On pose}: u_0 = 1 \text{ et } \forall n \in \mathbb{N}, \, u_n = \left\{ \begin{array}{ll} u_{\frac{n}{2}}^2 & \text{si } n \text{ est pair,} \\ 3u_{\frac{n-1}{2}}^2 & \text{si } n \text{ est impair.} \end{array} \right..$

Montrer que : $\forall n \in \mathbb{N}, u_n = 3^n$.

Exemple 22: On pose : $u_0 = 1$ et $\forall n \in \mathbb{N}$, $u_{n+1} = u_0 + u_1 + \dots + u_n$.

Montrer que : $\forall n \in \mathbb{N}^*$, $u_n = 2^{n-1}$.

- **Exemple 23:** On pose : $u_0 = -1$, $u_1 = 0$ et $\forall n \in \mathbb{N}$, $u_{n+2} = 3u_{n+1} 2u_n$. Déterminer le terme général de la suite (u_n) .
- **Exemple 24:** On pose : $u_0 = 0$, $u_1 = -1$ et $\forall n \in \mathbb{N}$, $u_{n+2} = -2u_{n+1} u_n$. Déterminer le terme général de la suite (u_n) .
- **□ Exemple 25:** Résoudre l'équation d'inconnue $x \in \mathbb{R}$:

$$x = \sqrt{6 + x}$$
.

⇔ Exemple 26: Montrer que:

$$\forall y \in \mathbb{R} \setminus \{1\}, \exists x \in \mathbb{R} \setminus \{1\}, \ y = \frac{x+1}{x-1}$$

 \Rightarrow **Exemple 27:** Soit $f \in \mathcal{F}(\mathbb{R}, \mathbb{R})$, montrer que:

$$\exists ! (g,h) \in \mathcal{P}(\mathbb{R}) \times \mathcal{I}(\mathbb{R}), \, f = g + h,$$

où $\mathcal{P}(\mathbb{R})$ désigne l'ensemble des fonctions paires sur \mathbb{R} , $\mathcal{I}(\mathbb{R})$ désigne l'ensemble des fonctions impaires sur \mathbb{R} et $(g,h) \in \mathcal{P}(\mathbb{R}) \times \mathcal{I}(\mathbb{R})$ signifie que $g \in \mathcal{P}(\mathbb{R})$ et $h \in \mathcal{I}(\mathbb{R})$.