Exemples du chapitre 2 : Étude de fonctions, fonctions logarithmes, exponentielle et puissances

$$\Rightarrow$$
 Exemple 1: Posons $f: x \mapsto \sqrt{\frac{x^2}{x^2+1}}$. Etudier la dérivabilité et calculer la dérivée de f .

$$\Rightarrow$$
 Exemple 2: Soit $f : \mathbb{R} \to \mathbb{R}$, $x \mapsto x^2$. Calculer $f^{(n)}$ pour $n \in \mathbb{N}$.

$$\begin{tabular}{lll} $\not \subset $ \textbf{Exemple 3:} Soit & f: & \mathbb{R} & \rightarrow & \mathbb{R} \\ & x & \mapsto & x+1 \\ \end{tabular} \ . \ \mbox{Montrer que f est bijective et déterminer sa bijection réciproque.}$$

1. Soit
$$f: \mathbb{R}^{+*} \to \mathbb{R}$$
 . Montrer que f est bijective de \mathbb{R}^{+*} vers un intervalle que l'on précisera.

2. Soit
$$f: [0,+\infty[\rightarrow]0,1]$$

 $x \mapsto \frac{1}{1+x^2}$. Montrer que f est bijective et déterminer f^{-1} .

⇔ Exemple 5:

1. On pose :
$$f: \mathbb{R} \to \mathbb{R}$$
 Étudier la bijectivité de f et la dérivabilité de f^{-1} .

2. On pose :
$$f: [1,+\infty[\to \mathbb{R} \\ x \mapsto \frac{e^x}{x}]$$
. Étudier la bijectivité de f et la dérivabilité de f^{-1} .

$$\Rightarrow$$
 Exemple 6: Etudier la fonction $f: x \mapsto x^{1/x}$.