Exemples du chapitre 5 : Inégalités

- \Rightarrow **Exemple 1:** Soient $a, b, c, d, e, f, x, y, z \in \mathbb{R}$ tels que $0 < a \le x \le b, d \le y \le c < 0$ et $0 < e \le z \le f$. Encadrer:
 - x-y:
 - *xy*:
 - $\frac{x-y}{z}$:
- \Rightarrow **Exemple 2:** Résoudre l'inéquation d'inconnue $x \in \mathbb{R}$:

$$(x+1)^3(x-1) > (x+1)^4$$
.

Exemple 3: Résoudre, dans ℝ, l'inéquation suivante :

$$|1-x| \le 2|x| - 3.$$

Exemple 4: Résoudre, dans ℝ, l'inéquation suivante :

$$|(x-1)(x+2)| \le 2.$$

 \Rightarrow **Exemple 5:** On considère la suite (u_n) définie par :

$$u_0 = \frac{1}{2}$$
 et $\forall n \in \mathbb{N}$, $u_{n+1} = \frac{(-1)^n + u_n}{2}$.

Montrons que (u_n) est bornée.

⇔ Exemple 6: Montrer que :

$$\forall m, n \in \mathbb{Z}, \left\lfloor \frac{n+m}{2} \right\rfloor + \left\lfloor \frac{n-m+1}{2} \right\rfloor = n.$$

 \Rightarrow **Exemple 7:** Résoudre l'équation d'inconnue $x \in \mathbb{R}$:

$$\lfloor 3x - 2 \rfloor = \lfloor x + 1 \rfloor.$$

Exemple 8: Soit $n \in \mathbb{N}^*$, soit $f: \mathbb{R} \to \mathbb{R}$. Montrer que f est périodique. En déduire que : $x \mapsto x - n \left\lfloor \frac{x}{n} \right\rfloor$.

$$\forall x \in R, \, 0 \le f(x) < n.$$