Exemples du chapitre 6 : Calcul algébrique

- **Exemple 1:** Soit $(a_k)_{k \in \mathbb{N}^*}$ une suite de nombres réels tels que : $\forall n \in \mathbb{N}^*$, $\sum_{k=1}^n a_k = 2n$.
 - Soit $j \in \mathbb{N}^*$, calculer: $\sum_{k=1}^{j} a_k$.
 - Soit $n \in \mathbb{N}^*$, calculer: $\sum_{i=1}^n a_i$.

- Soit $n \in \mathbb{N}^*$, calculer: $\sum_{j=1}^{2n} a_j$.
- Soit $n \in \mathbb{N}^*$, calculer: $\sum_{j=n}^{2n} a_j$.
- $\Rightarrow \textbf{Exemple 2: Soit } n \in \mathbb{N}^*, \text{ calculer } \sum_{k=0}^{n} (k+1)^3 \sum_{k=1}^{n} k^3.$
- \Rightarrow **Exemple 3:** Soit $n \in \mathbb{N}^*$, calculer la somme :

$$S_n = 1 \times n + 2 \times (n-1) + \dots + n \times 1.$$

□ Exemple 4: Soit $n \in \mathbb{N}^*$, calculer la somme :

$$S_n = \sum_{k=1}^{2n} (-1)^k k^3.$$

- **Exemple 5:** Soit $r \in \mathbb{R}$, soit $(u_n)_{n \in \mathbb{N}}$ la suite définie par : $u_0 \in \mathbb{R}$ et : $\forall n \in \mathbb{N}$, $u_{n+1} = u_n + r$. Retrouver la formule donnant le terme général de (u_n) en utilisant une somme télescopique.
- \triangleleft **Exemple 6:** Soit $n \in \mathbb{N}$. Montrer que:

$$6|(7^n-1)$$
 et $7|(3^{2n}-2^n)$.

 \Rightarrow **Exemple 7:** Soit $n \in \mathbb{N}^*$, soit $(x_1, ..., x_n) \in \mathbb{R}^n$, soit $\alpha \in \mathbb{R}^{+*}$. Montrer que:

$$\left| \frac{1}{\alpha} \sum_{i=1}^{n} x_i \right| \ge \sum_{i=1}^{n} \left\lfloor \frac{x_i}{\alpha} \right\rfloor.$$

Exemple 8: Montons que :

$$\forall n \in \mathbb{N}^*, \left| \sum_{k=1}^n \frac{\sin(k)}{k2^k} \right| \le 1.$$

- \Rightarrow Exemple 9: Calculer: $\prod_{k=1000}^{1000} k \ln(1+|k|)$.
- \Rightarrow **Exemple 10:** Soit $n \in \mathbb{N}^*$, calculer:

$$S_n = \sum_{k=1}^n \frac{k}{(k+1)!}.$$

 \Rightarrow **Exemple 11:** Soit $n \in \mathbb{N}$,

• Simplifier :
$$\prod_{k=1}^{n} (2k)$$
.

• Simplifier :
$$\prod_{k=1}^{n} (2k)$$
.
• Simplifier : $\prod_{k=1}^{n} (2k+1)$.

Arr Exemple 12: Soit $n \in \mathbb{N}$, simplifier: $\prod_{k=1}^{n} \frac{(k+1)^k}{k^{k-1}}.$

$$\Rightarrow$$
 Exemple 13: Soit $n \in \mathbb{N}^*$, calculer: $\sum_{i=0}^n \sum_{j=i}^n \frac{i}{j+1}$.

Arr **Exemple 14:** Soit $n \in \mathbb{N}^*$, calculer les sommes :

$$S_n = \sum_{1 \le i, j \le n} (i+j)$$
 et $T_n = \sum_{1 \le i \le j \le n} (i+j)$.

 $\Rightarrow \textbf{Exemple 15: Soit } n \in \mathbb{N}^*, \text{calculer: } \sum_{i,j \in [\![1,n]\!]} \min(i,j).$

r > Exemple 16: Soit $n \in \mathbb{N}^*$. Calculer $\sum_{k=0}^{n} \binom{n}{k} 3^{-k}$.

Arr Exemple 17: Soit $n \in \mathbb{N}^*$. Calculer $\sum_{j=0}^n \sum_{i=j}^n \binom{i}{j}$.

r > Exemple 18: Soit $n \in \mathbb{N}^*$. Calculer $\sum_{k=0}^n k \binom{n}{k}$.

Arr Exemple 19: Soit $n \in \mathbb{N}^*$. Calculer $\sum_{k=0}^n (-1)^k \binom{2n+1}{k}$.