
Exemples du chapitre 7 : Nombres complexes

Exemple 1: Posons $z_1 = 1 + i$, $z_2 = 2 + 3i$ et $z_3 = 4 - i$, calculer: $(z_1 + z_2)z_3$.

 \Rightarrow **Exemple 2:** Posons $z_1 = -1 + 3i$ et $z_2 = 4 - i$. Calculer la partie réelle et la partie imaginaire de $z_1^2 - 2z_2$.

Calculer z_1^2 Posons $z_1 = 1 + i$, $z_2 = 2 + 3i$ et $z_3 = 4 + i$. Calculer $z_1^2 - 3z_2 + iz_3$.

 \Rightarrow **Exemple 4:** On pose $z_1 = 2i$, $z_2 = 1 + i$, $z_3 = -1 - 2i$ et $z_4 = 3$. Représenter les vecteurs $\overrightarrow{u_1}$ (resp. $\overrightarrow{u_2}$, $\overrightarrow{u_3}$, $\overrightarrow{u_4}$, $\overrightarrow{v_1}$, $\overrightarrow{v_2}$, $\overrightarrow{v_3}$, $\overrightarrow{v_4}$) d'affixes z_1 (resp. z_2 , z_3 , z_4 , $\overline{z_1}$, $\overline{z_2}$, $\overline{z_3}$, $\overline{z_4}$).

Arr **Exemple 5:** Posons $z_1 = 1 + i$ et $z_2 = 2 + 3i$, calculer la forme algébrique de $\frac{z_1}{z_2}$.

Arr **Exemple 6:** Soit $z \in \mathbb{C} \setminus \{i\}$ tel que |z| = 1. Montrer que $Z = \frac{z+i}{iz+1} \in \mathbb{R}$.

 \Rightarrow **Exemple 7:** Posons $z_1 = \sqrt{3} + i$. Calculer le module de z_1^3 .

Exemple 8: Montrer que :

 $\forall a, b, c \in \mathbb{C}, |1 + a| + |a + b| + |b + c| + |c| \ge 1.$

Exemple 9: Montrer que : pour tout $n \in \mathbb{N}$, pour tout $z \in \mathbb{C}$ tel que $|z| \neq 1$:

$$\left| \frac{1 - z^{n+1}}{1 - z} \right| \le \frac{1 - |z|^{n+1}}{1 - |z|}.$$

□ Exemple 10: Résoudre l'équation, d'inconnue $x \in \mathbb{R}$:

$$e^{2ix} = i\left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right).$$

- \Rightarrow **Exemple 11:** Soient $t, a, b \in \mathbb{R}$. Factoriser:
 - 1. $z_1 = 1 + e^{it}$
 - 2. $z_2 = 1 e^{it}$
 - 3. $z_3 = \cos(a) + \cos(b)$
 - 4. $z_4 = \sin(a) \sin(b)$
- **⇔** Exemple 12: Soit $n \in \mathbb{N}$, soit $t \in \mathbb{R}$. Calculer:

$$\sum_{k=0}^{n} \cos(kt) \text{ et } \sum_{k=0}^{n} \sin(kt).$$

- Arr **Exemple 14:** Soit $x \in \mathbb{R}$. Exprimer $\cos(4x)$ en fonction de $\cos x$.
- **Exemple 15:** Soit $n \in \mathbb{N}^*$, soient $x, y \in \mathbb{R}$. Calculer la somme suivante :

$$S = \sum_{k=0}^{n} \binom{n}{k} \cos(x + ky).$$

- **⇔ Exemple 16:** Déterminer la forme trigonométrique de :
 - 1. $z_1 = 1 + i$
 - 2. $z_2 = -1 i\sqrt{3}$
- ➡ **Exemple 17:** Déterminer l'argument principal de :
 - 1. $z_1 = (1+i)^{1000}$
 - 2. $z_2 = (-1 i\sqrt{3})^{500}$
- **Exemple 18:** Calculer les racines carrées de $\sqrt{3}$ + i et de −5 + 12i.
- Arr **Exemple 19:** Résoudre l'équation d'inconnue $z \in \mathbb{C}$:

$$z^{2} - (5 - 14i)z - 2(5i + 12) = 0.$$

$$z^2 + 2z + 1 - \sqrt{3} - i = 0.$$

$$z^{3} + (1-i)z^{2} + (-1-4i)z - 3 + i = 0.$$

On commencera par montrer que i est racine de cette équation.

 \Rightarrow **Exemple 22:** On pose: $u_0 = 1$, $u_1 = 0$ et $\forall n \in \mathbb{N}$, $u_{n+2} = -u_n$.

Déterminer le terme général de la suite (u_n) .

- \Rightarrow **Exemple 24:** Déterminer les racines 5-ièmes de -2+2i.
- **⇔ Exemple 25 :** Résoudre l'équation d'inconnue $z \in \mathbb{C}$:

$$z^6 - 2iz^3 - 2 = 0.$$

□ Exemple 26: Soit $n \in \mathbb{N}^*$. Résoudre l'équation d'inconnue $z \in \mathbb{C}$:

$$z^n + 1 = 0$$
.

- ightharpoonup **Exemple 27:** Résoudre les équations d'inconnue $z \in \mathbb{C}$:
 - 1. $e^z = -1$
 - 2. $e^z = 1 + i$
 - 3. $e^z = 2$
- **Exemple 28:** Soit $n \in \mathbb{N}^*$, calculer les dérivées n-ièmes de cos et sin.
- \Rightarrow **Exemple 29:** Déterminer les nombres $z \in \mathbb{C}$ tels que les points d'affixes 1, z et z^2 forment un triangle rectangle.