Exercices du chapitre 1 : Rudiments de logique, généralités et révisions sur les suites et les fonctions

I Bases des mathématiques

Exercice 1: (*)

Déterminer les valeurs de $n \in \mathbb{N}$ pour les quelles $\frac{2n^2 - n - 6}{n + 3} \in \mathbb{Z}$.

II Quantificateurs

Exercice 2:

Examiner la vérité des propositions suivantes :

- 1. $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x + y^2 = 0$,
- 2. $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x + y^2 = 0$,
- 3. $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x + y^2 = 0$
- 4. $\exists x \in \mathbb{R}, \exists y \in \mathbb{R}, x + y^2 = 0$,
- 5. $\forall y \in \mathbb{R}, \exists x \in \mathbb{R}, x + y^2 = 0.$

Les propriétés suivantes sont-elles vraies ou fausses? On justifiera les réponses.

- 1. $\forall x \in \mathbb{R}^+, x^2 \le x^4$,
- 2. $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, y^2 > x$
- 3. $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x + y > 0$
- 4. $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x + y > 0$.

Exercice 4: (\star)

Examiner la vérité de la proposition suivante, ainsi que celles que l'on peut obtenir en permuttant les quantificateurs :

$$\exists x \in \mathbb{R}^*, \forall y \in \mathbb{R}^*, \forall z \in \mathbb{R}^*, z = xy.$$

Exercice 5:

Soit $n \in \mathbb{Z}$, montrer que $\frac{21n-3}{4}$ et $\frac{15n-2}{4}$ ne sont pas simultanément dans \mathbb{Z} .

Exercice 6: (*)

Montrer que:

$$\forall n \in \mathbb{N}^*, \sqrt{n^2 + 1} \notin \mathbb{N}.$$

III Généralités sur les suites et les fonctions

Après avoir déterminé les ensembles de définition, étudier la parité des fonctions définies par:

1.
$$f_1(x) = \frac{1}{x - \frac{1}{x}}$$

2.
$$f_2(x) = \frac{\sqrt{x+1}}{\sqrt{x-1}}$$

1.
$$f_1(x) = \frac{1}{x - \frac{1}{x}}$$
 2. $f_2(x) = \frac{\sqrt{x+1}}{\sqrt{x-1}}$ 3. $f_3(x) = \frac{(x-1)^2 + (x+1)^2}{(x-1)^2 - (x+1)^2}$

Exercice 8:

Soient $f, g \in \mathcal{F}(\mathbb{R}, \mathbb{R})$.

- a. Montrer que, si f est paire, alors $g \circ f$ est paire.
- b. Montrer que si f est impaire et g est impaire, alors $g \circ f$ est impaire.
- c. Montrer que si f est impaire et g est paire, alors $g \circ f$ est paire.

IV Logique

Exercice 9: (*)

Soient $a, b \in \mathbb{R}$, montrer que : $a^2 + ab + b^2 = 0 \Rightarrow a = b = 0$.

Exercice 10: (\star)

Soit $a \in \mathbb{R}$. Montrer que : $(\forall \varepsilon > 0, |a| \le \varepsilon) \Rightarrow a = 0$.

Exercice 11: (\star)

Soit $x \in \mathbb{R}$, montrer que : $x \notin \mathbb{Q} \Rightarrow 1 + x \notin \mathbb{Q}$.

Exercice 12: (*)

Soient $a, b \in \mathbb{R}$. Montrer que : $(\forall \varepsilon > 0, a < b + \varepsilon) \Rightarrow a \le b$.

Exercice 13: (\star)

Soient $x, y \in \mathbb{R}$. Montrer que : $x + y \notin \mathbb{Q} \Longrightarrow (x \notin \mathbb{Q} \text{ ou } y \notin \mathbb{Q})$.

Exercice 14: (★★)

Soit $n \in \mathbb{N}^*$, soient $x_1, \dots, x_n, M \in \mathbb{R}$. Montrer que :

$$x_1 + \dots + x_n > M \Longrightarrow \max(x_1, \dots, x_n) > \frac{M}{n}.$$

Exercice 15: (★★)

- 1. (a) Montrer que, pour tout $n \in \mathbb{N}$, n(n+1) est pair.
 - (b) Soit $n \in \mathbb{N}$, traduire en termes logiques la propriété : "n est divisible par 8".
- 2. Soit $n \in \mathbb{N}$.

On considère la propriété ${\cal P}$ suivante :

"si $n^2 - 1$ n'est pas divisible par 8, alors l'entier n est pair".

- (a) Ecrire la contraposée de *P*.
- (b) Prouver, par un raisonnement direct, la contraposée de P.
- (c) Que peut-on en déduire pour *P*?

Exercice 16: (**)

Soit $m \in \mathbb{R}$, montrer que :

$$(\forall x \in \mathbb{R}, mx + 1 \ge 0) \Leftrightarrow m = 0.$$

V Monotonie

Exercice 17: (\star)

On considère la suite définie par :

$$u_0 = 0$$
 et $\forall n \in \mathbb{N}, u_{n+1} = \sqrt{2u_n + 35}$.

- 1. Montrer que (u_n) est majorée par 7.
- 2. Montrer que (u_n) est croissante.

Exercice 18: (**)

Soit $f \in \mathcal{F}(\mathbb{R}, \mathbb{R})$ une fonction strictement croissante. Montrer que :

$$\forall x \in \mathbb{R}, (f \circ f(x) = x \Leftrightarrow f(x) = x).$$

Exercice 19: $(\star\star)$

Soit $f: \mathbb{R} \to \mathbb{R}$ telle que $f \circ f$ est croissante et $f \circ f \circ f$ est strictement décroissante. Montrer que f est strictement décroissante.

VI Systèmes linéaires

Exercice 20:

Résoudre le systèmes suivant d'inconnues $x, y, z \in \mathbb{R}$:

$$\begin{cases} 2x + 3y - z = -1 \\ x + 2y + 3z = 2 \\ 3x + 4y - 5z = -4 \end{cases}$$

Exercice 21:

Soient $a, b \in \mathbb{R}$. Résoudre le systèmes suivant d'inconnues $x, y, z \in \mathbb{R}$:

$$\begin{cases} 3x + y - z = 1 \\ 5x + 2y - 2z = a \\ 4x + y - z = b \end{cases}$$

Exercice 22:

Soit $m \in \mathbb{R}$. Résoudre le systèmes suivant d'inconnues $x, y, \in \mathbb{R}$:

$$\begin{cases} mx + (m-1)y = m+2\\ (m+1)x - my = 5m+3 \end{cases}$$

Exercice 23: (*)

Soit $m \in \mathbb{R}$. Résoudre le système suivant d'inconnues $x, y, z \in \mathbb{R}$:

$$\begin{cases} x + y + (2m-1)z = 1 \\ mx + y + z = 1 \\ x + my + z = 3(m+1) \end{cases}$$

Exercice 24: (*)

Soit $m \in \mathbb{R}$. Résoudre le système suivant d'inconnues $x, y, z \in \mathbb{R}$:

$$\begin{cases} x - my + m^2z = m \\ mx - m^2y + mz = 1 \\ mx + y - m^3z = 1 \end{cases}$$

VII Principe de récurrence

Exercice 25:

2

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par :

$$\begin{cases} u_0 = 2 \\ \forall n \in \mathbb{N}, u_{n+1} = 2u_n - n. \end{cases}$$

Montrer que :

$$\forall n \in \mathbb{N}, u_n = 2^n + n + 1.$$

Exercice 26:

Montrer que : pour tout $n \in \mathbb{N}$, $3^{2n} - 2^n$ est divisible par 7.

Exercice 27:

Montrer que : pour tout $n \in \mathbb{N}$, $7^n - 1$ est divisible par 6.

Exercice 28: $(\star\star)$

Montrer que :

- 1. pour tout $n \ge 2$, $2^{2^n} 6$ est divisible par 10,
- 2. la somme des cubes de trois entiers consécutifs est divisible par 9.

VIII Suites arithmétiques, suites géométriques, suites arithmético-géométriques

Exercice 29: (★)

On considère la suite définie par :

$$u_0 = 1 \text{ et } \forall n \in \mathbb{N}, \ u_{n+1} = \frac{2u_n}{2 + 3u_n}.$$

1. Montrer que : $\forall n \in \mathbb{N}, u_n > 0$.

On pose alors:

$$\forall n \in \mathbb{N}, \ v_n = \frac{1}{u_n}.$$

- 2. Montrer que (v_n) est arithmétique.
- 3. En déduire l'expression de v_n en fonction de n puis celle de u_n en fonction de n.

Exercice 30: (★)

On considère la suite définie par :

$$u_0 = 5 \text{ et } \forall n \in \mathbb{N}, \ u_{n+1} = \frac{4u_n - 2}{u_n + 1}.$$

1. Montrer que : $\forall n \in \mathbb{N}, u_n > 2$.

On pose alors:

$$\forall n \in \mathbb{N}, \ \nu_n = \frac{u_n - 1}{u_n - 2}.$$

- 2. Montrer que (v_n) est géométrique.
- 3. En déduire l'expression de v_n en fonction de n puis celle de u_n en fonction de n.

Exercice 31 :

Donner le terme général de la suite définie par :

$$u_0 = 0 \text{ et } \forall n \in \mathbb{N}, \ u_{n+1} = \frac{1}{3}u_n + 2.$$

Exercice 32:

Donner le terme général de la suite définie par :

$$u_0 = 1 \text{ et } \forall n \in \mathbb{N}, u_{n+1} = -u_n + 4.$$

Exercice 33: (*)

On considère la suite (u_n) définie par :

$$u_0 = 2$$
 et $\forall n \in \mathbb{N}$, $u_{n+1} = 2u_n - n + 2$.

On pose:

$$\forall n \in \mathbb{N}, v_n = u_n - n.$$

Etudier (v_n) et en déduire, pour tout $n \in \mathbb{N}$, l'expression de u_n en fonction de n.

IX Fonctions périodiques

Exercice 34: (*)

Soient $f,g:\mathbb{R}\to\mathbb{R}$. On suppose qu'il existe $T_1,T_2\in\mathbb{Z}^*$ tels que f est périodique de période T_1 et g est périodique de période T_2 . Montrer que f+g est périodique.

X Autres principes de récurrence

Exercice 35:

On définit la suite réelle $(u_n)_{n\in\mathbb{N}}$ par :

$$\left\{ \begin{array}{l} u_0 = 1, \\ u_1 = 1, \\ \forall n \in \mathbb{N}, \, u_{n+2} = u_{n+1} + u_n. \end{array} \right.$$

Montrer que:

3

$$\forall n \in \mathbb{N}, u_n \le \left(\frac{5}{3}\right)^n.$$

Exercice 36:

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par :

$$\begin{cases} u_0 = 0 \\ u_1 = 0 \\ u_2 = 2 \\ \forall n \in \mathbb{N}, u_{n+3} = 3u_{n+2} - 3u_{n+1} + u_n. \end{cases}$$

Montrer que:

$$\forall n \in \mathbb{N}, u_n = n(n-1).$$

Exercice 37: (*)

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par :

$$\begin{cases} u_0 = 0 \\ u_1 = 1 \\ \forall n \in \mathbb{N}, u_{n+2} = \frac{u_n + u_{n+1}}{2} + 1. \end{cases}$$

Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est strictement croissante.

Exercice 38: (★★)

Soit $x \in \mathbb{R}^*$ tel que $x + \frac{1}{x} \in \mathbb{Z}$. Montrer que :

$$\forall n \in \mathbb{N}, x^n + \frac{1}{x^n} \in \mathbb{Z}.$$

Exercice 39: (*)

On définit la suite $(u_n)_{n\in\mathbb{N}}$ par :

$$u_0 = 1 \text{ et } \forall n \in \mathbb{N}, u_{n+1} = \frac{1}{n+1} (u_0^2 + u_1^2 + \dots + u_n^2).$$

Montrer que :

$$\forall n \in \mathbb{N}, u_n = 1.$$

Exercice 40: (★★)

Soit (u_n) la suite vérifiant :

$$u_0 = 0$$
 et $\forall n \in \mathbb{N}$, $u_{n+1} = \left\{ \begin{array}{ll} 2u_{\frac{n}{2}} + 1 & \text{ si } n \text{ pair} \\ u_n + 1 & \text{ si } n \text{ impair.} \end{array} \right.$

Montrer que :

$$\forall n \in \mathbb{N}, u_n = n.$$

Exercice 41: $(\star \star \star)$

Sans utiliser la décomposition en facteurs premiers, montrer que :

$$\forall n \in \mathbb{N}^*, \exists p, q \in \mathbb{N}, n = 2^p (2q + 1).$$

XI Suites récurrentes linéaires d'ordre 2

Exercice 42:

Donner le terme général de la suite définie par :

$$u_0 = 1$$
, $u_1 = 9$ et $\forall n \in \mathbb{N}$, $u_{n+2} = u_{n+1} - \frac{1}{4}u_n$.

Exercice 43: (*)

Calculer le terme général de la suite (u_n) définie par :

$$u_0, u_1 \in \mathbb{R}, \forall n \in \mathbb{N}, u_{n+2} = \frac{1}{2}(u_{n+1} + u_n).$$

XII Raisonnement par analyse-synthèse

Exercice 44: (*)

Soit f une fonction continue sur \mathbb{R} . Montrer qu'il existe une unique couple (g,h) de fonctions telles que :

$$f = g + h,$$

$$\exists a \in \mathbb{R}, \ \forall x \in \mathbb{R}, \ g(x) = a,$$

et $h(0) = 0$.

Exercice 45: (★★)

Soit f une fonction continue sur \mathbb{R} . Montrer qu'il existe une unique couple (g,h) de fonctions telles que :

$$f=g+h,$$

$$\exists a\in\mathbb{R},\,\forall x\in\mathbb{R},\,g(x)=ax,$$
 et h est continue sur \mathbb{R} telle que $\int_0^1h=0.$

Exercice 46: (**)

Trouver toutes les fonctions $f : \mathbb{R} \to \mathbb{R}$ telles que : $\forall g \in \mathcal{F}(\mathbb{R}, \mathbb{R}), f \circ g = g \circ f$.

Exercice 47: (★★)

Soit $f \in \mathcal{F}(\mathbb{R}, \mathbb{R})$ telle que :

$$\forall x, y, z \in \mathbb{R}, (x \neq y \text{ et } x \neq z) \Rightarrow \left(\frac{f(x) - f(y)}{x - y} = \frac{f(x) - f(z)}{x - z}\right).$$

Montrer que:

$$\exists a, b \in \mathbb{R}, \forall x \in \mathbb{R}, f(x) = ax + b.$$

Exercice 48: $(\star \star \star)$

Déterminer les fonctions $f: \mathbb{R}^{+*} \to \mathbb{R}^{+*}$ telles que :

$$\forall x \in \mathbb{R}^{+*}, f(f(x)) + f(x) = 2x.$$