Exercices du chapitre 3 : Arithmétique

I Division d'entiers

Exercice 1: (\star)

On divise deux entiers a et b, tels que a > b, par leur différence a - b. Comparer les quotients et les restes obtenus.

II pgcd

Exercice 2 :

Déterminer les $n \in \mathbb{N}^*$ tels que si on divise 4373 et 826 par n, on obtient respectivement 8 et 7 pour restes.

Exercice 3:

Déterminer les $n \in \mathbb{N}^*$ tels que si on divise 6381 et 3954 par n, on obtient respectivement 9 et 6 pour restes.

Exercice 4:

Soient $m, n \in \mathbb{N}^*$. Déterminer :

pgcd(mn,(2m+1)n).

Exercice 5: (*)

Soit $n \in \mathbb{N}^*$. On pose :

$$a = n^2 + 3n$$
 et $b = n^2 + 5n + 6$.

- 1. Déterminer pgcd (n, n + 2).
- 2. Déterminer pgcd(a, b).

III ppcm

Exercice 6: (**)

Déterminer les entiers naturels non nuls a,b tels que $a \le b$ et :

$$ppcm(a, b) = 21pgcd(a, b).$$

IV Nombres premiers

Exercice 7: (\star)

Soit $m \ge 2$. On suppose que m divise (m-1)! + 1.

Montrer que m est premier.

Exercice 8: (*)

Soient $a, n \in \mathbb{N}^*$, soit p un nombre premier. Montrer que :

$$p|a^n \Rightarrow p^n|a^n$$
.

Exercice 9: (*)

Soit *n* un entier supérieur ou égal à 2.

Montrer qu'aucun des entiers successifs de n! + 2 à n! + n n'est premier. Comment obtenir n entiers consécutifs non premiers?

Donner cinq entiers naturels consécutifs non premiers les plus petits possibles.

Exercice 10: (\star)

Soit $n \in \mathbb{N}^*$. Montrer qu'il existe un nombre premier p tel que :

$$n .$$

Exercice 11: $(\star\star)$

Soient $a, b, c, k \in \mathbb{N}^*$ tels que $ab = c^k$ et pgcd (a, b) = 1. Montrer qu'il existe $\alpha, \beta \in \mathbb{N}^*$ tels que $a = \alpha^k$ et $b = \beta^k$.

Exercice 12: $(\star\star)$

Soit $p \in \mathbb{N}^*$.

- 1. Soit $a \in \mathbb{R}$. Montrer que : $\forall n \in \mathbb{N}^*$, $a^n 1 = (a 1)(1 + a + ... a^{n-1})$.
- 2. Montrer que si $2^p 1$ est premier, alors p est premier.
- 3. On appelle nombre parfait un entier n dont la somme des diviseurs vaut 2n. Montrer que si $2^p 1$ est premier, alors $2^{p-1}(2^p 1)$ est un nombre parfait.

Exercice 13: $(\star\star)$

Soit $n \in \mathbb{N}^*$, soit $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_r^{\alpha_r}$ sa décomposition en produit de facteurs premiers.

- 1. Calculer le nombre de diviseurs positifs de n.
- 2. Calculer la somme S(n) des diviseurs positifs de n.
- 3. Montrer que si m et n sont premiers entre eux alors S(mn) = S(m)S(n).