Exercices du chapitre 4 : Trigonométrie

I Cercle trigonométrique

Exercice 1: (*)

En remarquant que $\frac{\pi}{12} = \frac{\pi}{3} - \frac{\pi}{4}$, déterminer les valeurs exactes de :

$$\cos\left(\frac{\pi}{12}\right)$$
 et $\sin\left(\frac{\pi}{12}\right)$.

Exercice 2: (*)

Montrer que:

$$\forall x \in \mathbb{R}, -2 \le \cos x + \sqrt{3} \sin x \le 2.$$

Exercice 3: $(\star\star)$

Montrer que :

$$\forall n \in \mathbb{N} \setminus \{0, 1\}, \forall x \in \mathbb{R} \setminus \pi \mathbb{Z}, |\sin(nx)| < n |\sin x|.$$

où $\pi \mathbb{Z} = \{k\pi, k \in \mathbb{Z}\}.$

II Équations et inéquations trigonométriques

Exercice 4:

Résoudre l'équation d'inconnue $x \in \mathbb{R}$:

$$\sin(2x) + \sin(x) = 0.$$

Exercice 5: (*)

Résoudre l'équation d'inconnue $x \in \mathbb{R}$:

$$2\cos^2(2x) - 3\cos(2x) = -1.$$

Exercice 6: (\star)

Résoudre l'équation d'inconnue $x \in \mathbb{R}$:

$$\cos(3x) + \sin x = 0.$$

Exercice 7: $(\star\star)$

Résoudre l'équation d'inconnue $x \in \mathbb{R}$:

$$\cos x - \cos 2x = \sin 3x$$
.

Exercice 8:

Résoudre les inéquations suivante d'inconnue $x \in \mathbb{R}$:

- 1. $\cos x > 0$,
- 2. $\sin x \le \frac{1}{2}$,

Exercice 9: (*)

Résoudre l'inéquation d'inconnue $x \in \mathbb{R}$:

$$2\sin^2 x - 5\sin x + 2 > 0$$
.

III Fonctions cosinus et sinus

Exercice 10: Etudier et tracer la fonction définie par :

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \cos x \cdot \sin 2x - 2\sin x$$

Exercice 11: (*) Etudier et tracer la fonction définie par :

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto 2\sin x + \sin(2x)$$

Exercice 12: (**) Etudier la fonction :

$$f: x \mapsto \sin^2 x - \sqrt{2}\cos x$$
.

Exercice 13: $(\star\star)$

Soit la fonction:

$$f: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto e^{-x}(\cos x + \sqrt{3}\sin x).$

- 1. Ecrire f sous la forme d'un produit d'une constante, d'une exponentielle et d'un cosinus.
- 2. Etudier les variations de f.

Exercice 14: $(\star\star)$

Soit $n \in \mathbb{N}^*$, on pose :

$$f_n: [0, \frac{\pi}{2}] \rightarrow \mathbb{R}$$

 $x \mapsto x \cos^n(x).$

1. Montrer que la dérivée de la fonction f_n peut se mettre sous la forme :

$$\forall x \in \left[0, \frac{\pi}{2}\right], f_n'(x) = \cos^{n-1}(x)g_n(x),$$

où g_n est une fonction dont on déterminera l'expression.

- 2. Etudier les variations de g_n .
- 3. Montrer que f_n admet un maximum.

IV Tangente

Exercice 15: (\star)

On considère la fonction définie par :

$$f: x \mapsto \tan(2x) - \sin^2\left(\frac{\pi}{4} - x\right).$$

- 1. Déterminer le domaine de définition \mathcal{D} de f.
- 2. Etudier la périodicité de f.
- 3. Etudier la parité de f.
- 4. Montrer que f est dérivable sur \mathcal{D} et que :

$$\forall x \in \mathcal{D}, f'(x) = \frac{2 + \cos^3(2x)}{\cos^2(2x)}.$$

5. Etudier et tracer f.

Exercice 16: (★★)

On considère la fonction définie par :

$$f: x \mapsto \sin(2x) - \frac{3}{4}\tan(x)$$
.

- 1. Déterminer le domaine de définition \mathcal{D} de f.
- 2. Etudier la périodicité de f.
- 3. Etudier la parité de f.
- 4. Etudier et tracer f.

Exercice 17: (★★)

Combien l'équation suivante admet-elle de solutions dans $[0, \pi]$?

$$\tan(x) + \tan(2x) + \tan(3x) = 0.$$

Exercice 18: $(\star \star \star)$

Etudier la fonction :

$$f: x \mapsto \tan^2(x)\sqrt{1-\cos x}$$
.

On étudiera la dérivabilité de f en 0.

V Fonctions cosinus et sinus hyperboliques

Exercice 19: (*)

Montrer que:

$$\forall x \in \mathbb{R}, \operatorname{ch} x \ge 1 + \frac{x^2}{2}.$$

Exercice 20: (*)

Etudier $f: x \mapsto \operatorname{ch}(3x) - 3\operatorname{ch}(x)$.

Exercice 21: $(\star\star)$

1. Résoudre l'équation d'inconnue $x \in \mathbb{R}$:

$$\operatorname{sh}(x) = 2.$$

2. Résoudre l'inéquation d'inconnue $x \in \mathbb{R}$:

$$\operatorname{sh}(x) \leq 2$$
.

3. Résoudre l'équation d'inconnue $x \in \mathbb{R}$:

$$ch(x) = 2.$$

4. Résoudre l'inéquation d'inconnue $x \in \mathbb{R}$:

$$\operatorname{ch}(x) \leq 2$$
.

Exercice 22:

Soient $a, b \in \mathbb{R}$. Montrer que :

$$ch(a+b) = ch(a)ch(b) + sh(a)sh(b), ch(a-b) = ch(a)ch(b) - sh(a)sh(b),$$

 $sh(a+b) = sh(a)ch(b) + ch(a)sh(b), sh(a-b) = sh(a)ch(b) - ch(a)sh(b),$
 $ch(2a) = ch^2 a + sh^2 a, sh(2a) = 2ch ash a.$

Exercice 23: (★★)

1. (a) Montrer que la fonction *f* suivante est bijective :

$$f: \mathbb{R}^+ \to [1, +\infty[$$

$$x \mapsto \operatorname{ch} x.$$

On note argch sa bijection réciproque.

(b) Montrer que:

$$\forall x \in [1, +\infty[$$
, argch $x = \ln(x + \sqrt{x^2 - 1})$.

- 2. (a) Montrer que la fonction sh est bijective. On note argsh sa bijection réciproque.
 - (b) Montrer que:

$$\forall x \in \mathbb{R}$$
, $\operatorname{argsh} x = \ln(x + \sqrt{x^2 + 1})$.

VI Fonctions circulaires réciproques

Exercice 24: (\star)

Montrer que:

$$\forall x \in \mathbb{R}, \operatorname{Arccos} \frac{1-x^2}{1+x^2} = 2\operatorname{Arctan}|x|.$$

Exercice 25: $(\star\star)$

Déterminer son ensemble de validité et montrer la formule :

$$2\operatorname{Arctan}\sqrt{\frac{1-x}{1+x}} + \operatorname{Arcsin} x = \frac{\pi}{2}$$

Exercice 26: (★★)

Déterminer son ensemble de validité et montrer la formule :

$$2\operatorname{Arctan}(\sqrt{1+x^2}-x) + \operatorname{Arctan} x = \frac{\pi}{2}$$

Exercice 27: $(\star\star)$

Montrer que:

$$\forall x \in]-1,1], \arcsin \sqrt{1-x^2} - \operatorname{Arctan} \sqrt{\frac{1-x}{1+x}} = \begin{cases} \frac{\pi}{4} + \frac{3}{2} \operatorname{Arcsin} x & \text{si } x \leq 0\\ \frac{1}{2} \operatorname{Arccos} x & \text{si } x > 0. \end{cases}$$

Exercice 28: (*)

Etudier les variations des fonctions suivantes et tracer leur courbe représentative :

- 1. $f_1(x) = Arcsin\left(\frac{2\sqrt{x}}{1+x}\right)$,
- 2. $f_2(x) = (x-1)^2 \operatorname{Arctan} x$,

Exercice 29: (★)

Montrer que:

$$\forall x \in \mathbb{R}^{+*}$$
, Arctan $x > \frac{x}{1+x^2}$.

Exercice 30: (★★)

On pose:

$$f: x \mapsto \operatorname{Arctan} \frac{1 - \cos x}{\sin x}$$
.

1. Déterminer le domaine de définition de *f* .

- 2. Etudier la périodicité et la parité de f.
- 3. Soit $x \in]0, \pi[$, exprimer $\frac{1-\cos x}{\sin x}$ en fonction de $\frac{x}{2}$.
- 4. En déduire une expression simple de f(x) pour $x \in]0, \pi[$.
- 5. Tracer f sur] -3π , 3π [.
- 6. Calculer $f(\frac{3\pi}{2})$.

Exercice 31: (*)

Simplifier les expressions suivantes :

- 1. cos(4Arctan x),
- 2. $\sin(3\operatorname{Arctan} x)$.

Exercice 32: (**)

Soient $(x, y) \in \mathbb{R}^2$ avec $xy \neq 1$, montrer que :

$$Arctan x + Arctan y = Arctan \frac{x+y}{1-xy} + k\pi,$$

où:

- k = 0 si xy < 1,
- k = 1 si xy > 1 et x > 0,
- k = -1 si xy > 1 et x < 0.

Exercice 33: (★★)

Résoudre les équations suivantes, d'inconnue $x \in \mathbb{R}$:

- 1. $\operatorname{Arccos} x = \operatorname{Arcsin} 2x$,
- 2. $2\operatorname{Arcsin} x = \operatorname{Arcsin} (2x\sqrt{1-x^2}).$

Exercice 34: (★★)

Résoudre les équations suivantes, d'inconnue $x \in \mathbb{R}$:

- 1. Arctan x + Arctan $2x = \frac{\pi}{4}$,
- 2. $Arcsin 2x = Arcsin x + Arcsin (\sqrt{2}x)$.

Exercice 35: $(\star\star)$

3

Montrer la formule de Machin:

$$4\operatorname{Arctan}\frac{1}{5} - \operatorname{Arctan}\frac{1}{239} = \frac{\pi}{4}.$$