Exercices du chapitre 5 : Inégalités

I Inégalités dans $\mathbb R$

Exercice 1: (\star)

Soient a et b deux réels non nuls, distincts et de même signe. Montrer que :

$$\frac{a}{b} + \frac{b}{a} > 2.$$

Exercice 2:

Résoudre, dans R, l'inéquation suivante :

$$\sqrt{x-4} - \sqrt{2x-3} < 0.$$

II Valeur absolue

Exercice 3: (*)

Résoudre, dans R,

$$|x^2 + 2x| \ge 3.$$

Exercice 4: (*)

Résoudre, dans $\mathbb{R},$ les équations ou inéquations suivantes :

1.
$$|2x-4| = |x-1|$$

$$2. \left| \frac{x-1}{x+3} \right| \le 2$$

Exercice 5: (*)

Résoudre l'équation d'inconnue $x \in \mathbb{R}$:

$$|x+3| - |x-1| = |2x+1|$$
.

Exercice 6: (★★)

Résoudre l'équation suivante, d'inconnue $x \in \mathbb{R}$:

$$\sqrt{x+4-4\sqrt{x}} + \sqrt{x+9-6\sqrt{x}} = 1.$$

Exercice 7: $(\star\star)$

Soient $x, m \in \mathbb{R}$. Montrer que :

$$x \ge m \Rightarrow \sqrt{1 + x^2} \le 1 + 2|m| + x.$$

Exercice 8: (**)

1. Montrer que si x et y sont deux réels positifs tels que $x \ge y$, alors :

$$\sqrt{x+y} \le \sqrt{x} + \sqrt{y}$$
 et $\sqrt{x} - \sqrt{y} \le \sqrt{x-y} \le \sqrt{x} + \sqrt{y}$.

2. En déduire que, pour tout $x, y \in \mathbb{R}$:

$$\sqrt{|x+y|} \le \sqrt{|x|} + \sqrt{|y|}$$
 et $\left| \sqrt{|x|} - \sqrt{|y|} \right| \le \sqrt{|x-y|} \le \sqrt{|x|} + \sqrt{|y|}$.

Exercice 9: $(\star\star)$

Montrer que pour tout $x, y \in \mathbb{R}$:

$$|x| + |y| \le |x + y| + |x - y|,$$

 $1 + |xy - 1| \le (1 + |x - 1|)(1 + |y - 1|).$

III Majorations, minorations

Exercice 10:

Montrer que la fonction $f : \mathbb{R}^+ \to \mathbb{R}$, $x \mapsto x$ n'est pas majorée.

IV Partie entière

Exercice 11: Montrer que:

$$\forall n \in \mathbb{N}^*, \left\lfloor \sqrt{n^2 + 3n + 4} \right\rfloor = n + 1.$$

Exercice 12: $\overset{\text{N}}{\smile}$ Résoudre l'équation d'inconnue $x \in \mathbb{R}$:

$$\left|\sqrt{x^2+1}\right|=2.$$

Exercice 13: (\star) Résoudre l'équation d'inconnue $x \in \mathbb{R}^+$:

$$\lfloor \sqrt{x} \rfloor = \lfloor \frac{x}{2} \rfloor$$
.

Exercice 14: (*)

Montrer que:

$$\forall x, y \in \mathbb{R}, \lfloor x \rfloor + |x + y| + |y| \le \lfloor 2x \rfloor + |2y|.$$