Exercices du chapitre 6 : Calcul algébrique

I Sommes

Exercice 1: $\sum_{i=1}^{N-1}$

Soit $(x_k)_{k\in\mathbb{N}}$ une suite de nombres complexes telle que :

$$\forall n \in \mathbb{N}, \sum_{k=0}^{n} x_k = n(n+2).$$

Soit $n \in \mathbb{N}$, déterminer les valeurs de :

- 1. $S_1 = \sum_{k=0}^{6} x_k$,
- $2. S_2 = \sum_{k=0}^{n+1} x_k,$
- 3. $S_3 = \sum_{k=0}^{2n} x_k$,
- 4. $S_4 = \sum_{k=0}^{n} 2x_k$,
- 5. $S_5 = \sum_{k=n+1}^{2n} x_k$.

Exercice 2: (*)

Soit $n \in \mathbb{N}$. Calculer:

$$\sum_{k=0}^{2n} (-1)^k k.$$

Exercice 3: (\star)

Soit $N \in \mathbb{N}^*$. Calculer:

$$\sum_{n=0}^{N} n^3.$$

Exercice 4:

Soit $n \in \mathbb{N}$. Calculer:

$$\sum_{q=0}^{n} \sum_{p=0}^{q} \sum_{k=0}^{p} 2^{k}.$$

Exercice 5: (*)

Montrer que:

$$\forall n \in \mathbb{N}, \sum_{i=0}^{n} \sum_{j=0}^{n} 2^{\min(i,j)} = 6.2^{n} - 2n - 5.$$

Exercice 6: $(\star\star)$

Soit $n \ge 2$.

a. Simplifier l'expression:

$$\sum_{p=1}^{n} \left(\frac{1}{p} - \frac{1}{p+1} \right).$$

b. Utiliser une méthode analogue pour en déduire une expression plus simple de :

$$\sum_{p=1}^{n} \frac{2p+1}{(p^2+p)^2}.$$

Exercice 7: (\star)

1. Montrer que:

$$\forall n \in \mathbb{N}^*, \sqrt{n+1} - \sqrt{n} \le \frac{1}{2\sqrt{n}}.$$

2. On pose:

$$\forall n \in \mathbb{N}^*, S_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}.$$

Etudier la convergence de $(S_n)_{n\in\mathbb{N}^*}$.

Exercice 8: $(\star \star)$ Montrer que pour tout $n \in \mathbb{N}^*$ et pour tout $x \in \mathbb{R}$,

$$\left\lfloor \frac{\lfloor nx \rfloor}{n} \right\rfloor = \lfloor x \rfloor \text{ et } \sum_{k=0}^{n-1} \left\lfloor x + \frac{k}{n} \right\rfloor = \lfloor nx \rfloor.$$

Exercice 9: (★★)

Montrer que si la suite (u_n) est monotone, alors la suite de terme général :

$$\forall n \in \mathbb{N}^*, \ \nu_n = \frac{1}{n} \sum_{k=1}^n u_k,$$

est monotone de même sens que (u_n) .

Exercice 10:

Montrer que:

$$\forall n \in \mathbb{N}^*, \forall x \in \mathbb{R} \left| \sum_{k=1}^n \frac{(-1)^n \sin(nx)}{n+k^2} \right| \le 1.$$

Exercice 11: $(\star\star)$

Montrer que:

$$\forall n \in \mathbb{N}^*, \left| \sum_{k=1}^n (-1)^k \left(\sin \frac{\pi}{6k} \right)^k \right| \le 1.$$

II Produits

Exercice 12: \bigcirc Soit $n \in \mathbb{N}$, calculer:

$$\prod_{k=0}^{n} 2^k.$$

Exercice 13: (*)

Montrer que :

a.
$$\forall n \in \mathbb{N}^*, (n+1)! \ge \sum_{k=1}^n k!,$$

b.
$$\forall n \in \mathbb{N}^*, \sum_{k=1}^n k.k! = (n+1)! - 1.$$

Exercice 14: (*)

Montrer que :

$$\forall n \in \mathbb{N}^*, 2^{n-1} \le n! \le n^n.$$

Exercice 15: (*)

Montrer que :

$$\forall n \in \mathbb{N}^*, \prod_{k=1}^n (4k-2) = \prod_{k=n+1}^{2n} k.$$

Exercice 16: (**)

Soit $(u_n)_{n\in\mathbb{N}^*}$ une suite de nombres réels strictement positifs. On définit la suite des moyennes arithmétiques par :

$$\forall n \in \mathbb{N}^*$$
, $A_n = \frac{1}{n} \sum_{k=1}^n u_k$.

On définit la suite des moyennes géométriques par :

$$\forall n \in \mathbb{N}^*, G_n = \left(\prod_{k=1}^n u_k\right)^{\frac{1}{n}}.$$

Le but de cet exercice est de montrer l'inégalité arithmético-géométrique :

$$\forall n \in \mathbb{N}^*$$
, $G_n \leq A_n$.

1. Montrer que:

$$\forall x > 0$$
, $\ln(x) \le x - 1$.

2. Montrer que:

$$\forall n \in \mathbb{N}^*, \ln\left(\prod_{k=1}^n u_k\right) = \sum_{k=1}^n \ln(u_k)$$

3. Montrer que:

$$\forall n \in \mathbb{N}^*, G_n \leq A_n$$
.

4. Soit $n \in \mathbb{N}^*$. Dans quel cas a-t-on $A_n = G_n$?

Exercice 17: $(\star\star)$

Soit $n \ge 2$. Simplifier l'expression :

$$\prod_{p=1}^{n} \frac{(2p+1)(2p-1)}{(2p+3)(2p+5)}.$$

Exercice 18: $(\star\star)$

Soit $n \in \mathbb{N}^*$, soient $a_1, ..., a_n \in [1, +\infty[$. Montrer que :

$$\prod_{i=1}^{n} (1+a_i) \le 2^{n-1} (1+\prod_{i=1}^{n} a_i).$$

Exercice 19: (★★)

1. Montrer que, pour tout $x \in \mathbb{R}^*$,

$$ch x = \frac{\sinh 2x}{2\sinh x}.$$

2. Simplifier:

$$u_n = \prod_{k=1}^n \operatorname{ch} \frac{x}{2^k}.$$

3. En déduire $\lim_{n\to+\infty} u_n$.

III Sommes doubles

Exercice 20: $\sum_{i=1}^{\lfloor 1/2 \rfloor}$ Soit $n \in \mathbb{N}$, calculer:

$$\sum_{i=0}^{n} \sum_{j=0}^{n} 2^{2i-j}.$$

Exercice 21: \bigcirc^{11} Soit $n \in \mathbb{N}$. vérifier que :

$$\sum_{k=1}^{n} k 2^{k} = \sum_{k=1}^{n} \sum_{l=1}^{k} 2^{k},$$

et en déduire la valeur de :

$$\sum_{k=1}^{n} k2^{k}.$$

Exercice 22: $(\star \star)$ Soit $n \in \mathbb{N}^*$. Calculer:

$$\sum_{i,j\in[1,n]} \max(i,j),$$

où $\max(i,j)$ désigne le maximum de i et j, c'est-à-dire : $\max(i,j) = j$ si $i \le j$ et $\max(i,j) = i$ sinon.

IV Coefficients binomiaux et formule du binôme de Newton

Exercice 23: (★)

Déterminer tous les $(n, p) \in \mathbb{N}^* \times \mathbb{N}^*$ avec p < n tels que :

$$\begin{cases}
\begin{pmatrix} n \\ p \end{pmatrix} = \begin{pmatrix} n \\ p+1 \end{pmatrix} \\
4 \begin{pmatrix} n \\ p \end{pmatrix} = 5 \begin{pmatrix} n \\ p-1 \end{pmatrix}
\end{cases}$$

Exercice 24: \bigcirc Soit $n \in \mathbb{N}^*$. Calculer:

$$\sum_{k=0}^{n-1} (k+1) \frac{\binom{n}{k+1}}{\binom{n}{k}}.$$

Exercice 25: $(\star\star)$

On considère la suite définie par :

$$S_0 = 1$$
 et $\forall n \in \mathbb{N}$, $S_{n+1} = \sum_{k=0}^{n} \binom{n}{k} S_k$.

Montrer que:

$$\forall n \in \mathbb{N}, S_n \leq n!$$

Exercice 26: (*)

Soient $n, p, q \in \mathbb{N}$ tels que $p \ge nq + 1$. Montrer que :

$$\sum_{k=0}^{n} \binom{p-k}{q} = \binom{p+1}{q+1} - \binom{p-n}{q+1}.$$

Exercice 27:

Soit $n \in \mathbb{N}^*$. Calculer:

$$\sum_{k=0}^{n} \frac{\binom{n}{k}}{k+1}.$$

Exercice 28: \bigcirc Soit $n \in \mathbb{N}$, calculer:

$$\sum_{k=0}^{n} \sum_{i=k}^{n} \binom{n}{i} \binom{i}{k}.$$

Exercice 29: (★★)

Soient $a, b \in \mathbb{R}^{+*}$. Montrer que :

$$\forall n \in \mathbb{N}, \left(1 + \frac{a}{b}\right)^n + \left(1 + \frac{b}{a}\right)^n \ge 2^{n+1}.$$

Exercice 30: (★★)

Soit $n \in \mathbb{N}^*$, soit $p \in \mathbb{N}$ tel que n = 2p.

Calculer:

$$\sum_{k=0}^{p} \binom{n}{2k} \text{ et } \sum_{k=0}^{p-1} \binom{n}{2k+1}$$

Exercice 31: $(\star \star \star)$

Montrer que:

$$\forall n \in \mathbb{N}^*, 4^n (n!)^3 < (n+1)^{3n}$$