Exercices du chapitre 7 : Nombres complexes

I Ensemble des nombres complexes

Exercice 1:

Calculer les parties réelles et imaginaires de :

$$z_1 = (3+2i)^2(2-i)$$
 et $z_2 = \frac{(3+2i)(1+i)}{1-i}$.

Exercice 2:

Donner le conjugué de chaque nombre complexe :

$$z_1 = i(4-2i)^2$$
, $z_2 = \frac{i\sqrt{3}}{1+6i}$, $z_3 = \frac{z(1-i\bar{z})}{2z-4i\bar{z}}$, où $z \in \mathbb{C}^*$.

Exercice 3:

Soit $z \in \mathbb{C}^*$. Calculer:

$$\operatorname{Re}\left(\frac{1}{z}\right)$$
 et $\operatorname{Im}\left(\frac{1}{z}\right)$.

Exercice 4: (*)

Soit $z \in \mathbb{C}^*$. Montrer que :

$$z + \frac{1}{z} \in i\mathbb{R} \Leftrightarrow z \in i\mathbb{R}.$$

Exercice 5 : 💢

Soit $z \in \mathbb{C} \setminus \{1\}$. Calculer les parties réelles et imaginaires de :

$$Z = \frac{2 + \bar{z}}{1 - \bar{z}}.$$

Exercice 6: (\star)

Résoudre l'équation d'in connue $z\in\mathbb{C}$:

$$2z + 6\bar{z} = 3 + 2i.$$

II Module

exercice 7:

Soit $z \in \mathbb{U} \setminus \{1\}$. Montrer que:

$$\frac{z+1}{z-1} \in i\mathbb{R}.$$

Exercice 8: (*)

Soient $a, b, c \in \mathbb{U}$.

1. Montrer que:

$$\frac{a+b}{1+ab} \in \mathbb{R}.$$

2. Montrer que:

$$|ab+bc+ca| = |a+b+c|.$$

Exercice 9: (*)

Montrer que:

$$\forall z \in \mathbb{C}, |z| \le |z|^2 + |z - 1|.$$

Exercice 10: (★★)

Soit $n \in \mathbb{N}^*$, soient $a_1, \ldots, a_n, b_1, \ldots b_n \in \mathbb{C}$ tels que, pour tout $k \in [[1, n]], |a_k| \le 1$ et $|b_k| \le 1$. Montrer que :

$$\left| \prod_{k=1}^{n} a_k - \prod_{k=1}^{n} b_k \right| \le \sum_{k=1}^{n} |a_k - b_k|.$$

Exercice 11: $(\star \star \star)$

Soit $n \ge 2$ et soient $z_1, ..., z_n \in \mathbb{C}$.

Montrer que $\left|\sum_{k=1}^n z_k\right| = \sum_{k=1}^n |z_k|$ si et seulement si tous les z_k sont nuls, ou bien s'il existe $k_0 \in [\![1,n]\!]$ tel que $z_{k_0} \neq 0$ et pour tout $k \in [\![1,n]\!]$, z_k est de la forme $\lambda_k z_{k_0}$, où $\lambda_k \in \mathbb{R}^+$.

III Nombres complexes de module 1 et trigonométrie

Exercice 12:

Soit $\theta \in \mathbb{R}$, exprimer $\cos(3\theta)$ et $\sin(3\theta)$ en fonction de $\cos\theta$ et $\sin\theta$.

Exercice 13: (\star)

Soient $\theta, \alpha \in \mathbb{R}$ tels que : $\alpha \not\equiv \pi$ [2 π]. Montrer que $e^{i\alpha} + e^{2i\alpha} \not= 0$ puis déterminer la partie réelle de :

$$z = \frac{e^{i\theta} + 1}{e^{i\alpha} + e^{2i\alpha}}.$$

Exercice 14: (★★)

Soit $\theta \in \mathbb{R}$, exprimer $\sin(5\theta)$ en fonction de $\sin \theta$. En déduire la valeur de $\sin(\frac{\pi}{5})$.

Exercice 15: (*)

Soit $\theta \in \mathbb{R}$ tel que $(\theta \not\equiv \pi \mod 2\pi)$. On pose $t = \tan\left(\frac{\theta}{2}\right)$. Montrer que :

$$\cos\theta = \frac{1 - t^2}{1 + t^2} \qquad \qquad \sin\theta = \frac{2t}{1 + t^2}$$

Exercice 16: (*)

Soit $\alpha \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, donner la forme algébrique de :

$$\frac{1+i\tan\alpha}{1-i\tan\alpha}$$

Exercice 17: $(\star\star)$

Soit $n \in \mathbb{N}^*$, soit $x \in \mathbb{R}$. Calculer les sommes suivantes :

1.
$$S_1 = \sum_{k=1}^n \frac{1}{2^k} \cos\left(\frac{k\pi}{3}\right)$$
,

2.
$$S_2 = \sum_{k=0}^{n} \cos^k(x) \sin(kx)$$
.

IV Argument d'un nombre complexe non nul

Exercice 18:

Donner la forme algébrique des nombres complexes suivants :

1.
$$(\sqrt{3}+i)^{2013}$$
,

$$2. \left(\frac{9+i}{5-4i}\right)^4,$$

3.
$$(1 + e^{i\theta})^n$$
 avec $n \in \mathbb{N}$, $\theta \in \mathbb{R}$,

4.
$$\frac{(1+i)^5-1}{(1+i)^5+1}$$
.

Exercice 19:

Soit $a \in \mathbb{R}$. Déterminer la forme trigonométrique de :

$$z_1 = -\sin a + i\cos a$$
, $z_2 = \sin a + i\cos a$, $z_3 = -\cos a - i\sin a$.

Exercice 20:

On pose : $z_1 = 1 + i\sqrt{3}$, $z_2 = 1 - i$ et $z_3 = \frac{z_1}{z_2}$.

- 1. Déterminer la forme trigonométrique et la forme algébrique de z_3 .
- 2. En déduire les valeurs de :

$$\cos\left(\frac{7\pi}{12}\right)$$
 et $\sin\left(\frac{7\pi}{12}\right)$.

Exercice 21:

Donner la forme trigonométrique de :

$$\left(\frac{1+i\sqrt{3}}{1-i}\right)^{20}.$$

Exercice 22:

Déterminer le module et un argument des nombres complexes suivants :

$$z_1 = (-1+i)(-1+i\sqrt{3}), \quad z_2 = -2i(2+2i),$$

$$z_3 = \frac{\sqrt{3} + 2}{\sqrt{6} + i\sqrt{2}}, \quad z_4 = \frac{2\sqrt{3} - 6i}{-i}.$$

Exercice 23: (*)

Déterminer la forme trigonométrique de :

$$z = \frac{1+i+\sqrt{2}}{1-i-\sqrt{2}}.$$

Exercice 24:

Résoudre l'équation d'inconnue $z \in \mathbb{C}$:

$$\bar{z}=z^3$$
.

Exercice 25: (\star)

Déterminer la forme trigonométrique de $\sqrt{6} + i\sqrt{2}$.

En déduire les entiers $n \in \mathbb{N}$ tels que :

$$(\sqrt{6} + i\sqrt{2})^n \in \mathbb{R}.$$

Exercice 26: (**)

Soient $\theta \in \mathbb{R}$. Déterminer, lorsque c'est possible, le module et un argument de :

$$z = e^{i\theta} + e^{2i\theta}.$$

Exercice 27: (**)

Soit $n \in \mathbb{N}$. Calculer:

$$(1+i)^{4n}$$
.

En déduire les valeurs de :

$$\sum_{p=0}^{2n} (-1)^p \binom{4n}{2p} \operatorname{et} \sum_{p=0}^{2n-1} (-1)^p \binom{4n}{2p+1}.$$

V Équations algébriques

Exercice 28:

Déterminer les racines carrées de 1+i. En déduire la valeur de :

$$\cos\left(\frac{\pi}{8}\right)$$
 et $\sin\left(\frac{\pi}{8}\right)$.

Exercice 29:

Déterminer les racines carrées de 1 + 6i.

Exercice 30:

Résoudre les équations suivantes :

1.
$$z^2 - 2(2+i)z + 6 + 8i = 0$$
,

2.
$$iz^2 + (4i - 3)z + i - 5 = 0$$
.

Exercice 31:

Résoudre l'équation d'in connue $z\in\mathbb{C}$:

$$z^4 + iz^2 - (1 - i) = 0.$$

Exercice 32: (*)

Résoudre dans $\mathbb C$:

$$z^4 + (3 - 6i)z^2 - 2(4 + 3i) = 0.$$

Exercice 33: (*)

Soit l'équation d'inconnue $z \in \mathbb{C}$: $z^3 - 2z^2 + 2(2-3i)z - 20 = 0$.

Montrer qu'elle a une racine $z_0 \in i\mathbb{R}$.

Calculer les deux autres racines z_1 et z_2 .

Exercice 34: (**)

Calculer le terme général de la suite (u_n) définie par :

$$u_0 = 0$$
, $u_1 = 1$, $\forall n \in \mathbb{N}$, $u_{n+2} = u_{n+1} - \frac{1}{2}u_n$.

VI Racines *n*-ièmes

Exercice 35:

Déterminer les racines sixièmes de :

$$\frac{-4}{1+i\sqrt{3}}.$$

Exercice 36: (*)

Résoudre dans C :

$$z^6 + (2i - 1)z^3 - 1 - i = 0.$$

Exercice 37: (*)

Soit $n \in \mathbb{N}^*$. Résoudre dans \mathbb{C} :

$$(z-1)^n=1.$$

On donnera les résultats sous forme trigonométrique.

Exercice 38: (**)

Résoudre $4(z+i)^4 - (z+1)^4 = 0$. Donner les expressions algébriques des solutions.

Exercice 39: (*)

Soient $z = \exp(\frac{2i\pi}{7})$ et $u = z + z^2 + z^4$, $v = z^3 + z^5 + z^6$.

- 1. Calculer u + v et u^2 .
- 2. En déduire $\sin\left(\frac{2\pi}{7}\right) + \sin\left(\frac{4\pi}{7}\right) + \sin\left(\frac{8\pi}{7}\right)$.

Exercice 40: $(\star\star)$

1. Résoudre l'équation d'inconnue $z \in \mathbb{C}$:

$$\left(\frac{2z+1}{z+1}\right)^4 = 1. \quad (E)$$

2. Montrer que les images des solutions de (*E*) appartiennent à un même cercle dont on précisera le centre et le rayon.

Exercice 41: $(\star\star)$

Soit $a \in \mathbb{R}$, déterminer les racines quatrièmes de :

$$z = 8a^2 - (1 + a^2)^2 + 4ia(1 - a^2).$$

Exercice 42: $(\star\star)$

Montrer que :

$$\cos\left(\frac{\pi}{11}\right) + \cos\left(\frac{3\pi}{11}\right) + \cos\left(\frac{5\pi}{11}\right) + \cos\left(\frac{7\pi}{11}\right) + \cos\left(\frac{9\pi}{11}\right) = \frac{1}{2}.$$

VII Exponentielle complexe

Exercice 43:

Résoudre les équations suivantes dans $\mathbb C$:

- 1. $e^z = i$,
- 2. $e^z = 2$,
- 3. $e^z = 2i$,
- 4. $e^{2z} = 1 + i\sqrt{3}$.

Exercice 44: (*)

Résoudre l' équation suivante dans \mathbb{C} :

$$e^{2z} + e^z + 1 = 0.$$

VIII Dérivation d'une fonction complexe d'une variable réelle

Exercice 45: (**)

Soit $n \in \mathbb{N}^*$. Calculer la dérivée n-ième de :

$$f: x \mapsto \cos(x)e^x$$
.

Exercice 46: (**)

Soit $n \in \mathbb{N}^*$. Calculer les dérivées $n^{i \`{e}mes}$ de \cos^3 et \sin^3 .

IX Interprétation géométrique des nombres complexes

Exercice 47: (*)

Déterminer les nombres $z \in \mathbb{C}$ tels que z, z^2 et z^4 sont alignés.

Exercice 48: (**)

Déterminer les nombres $z \in \mathbb{C}$ tels que : z, $\frac{1}{z}$, -i sont alignés.

Exercice 49: (\star)

Le plan est rapporté à un repère orthonormal direct $(O, \overrightarrow{u}, \overrightarrow{v})$.

- 1. Calculer les module et argument du nombre complexe $a = \sqrt{3} i$. Marquer son image A.
- 2. On considère la rotation r de centre O et d'angle $\frac{\pi}{4}$. Soit f l'application qui, à l'affixe z de M, associe l'affixe z' de M' = r(M). Exprimer f(z) à l'aide de z.
- 3. Construire l'image B de A par la rotation r. Déterminer l'affixe b de B sous forme algébrique puis sous forme trigonométrique.
- 4. Déduire des calculs précédents les valeurs exactes de $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$.