Indications du chapitre 1 : Rudiments de logique, généralités et révisions sur les suites et les fonctions

I Bases des mathématiques

Exercice 1: (*)

Remarquer que $2n^2 - n - 6 = (n+3)(2n-7) + 15$.

 $Solution: n \in \{0,2,12\}$

II Quantificateurs

1. Exhiber un contre-exemple.

Solution: Faux

2. Exhiber un contre-exemple.

Solution: Faux

3. Raisonner par l'absurde.

Solution : Faux

4. Exhiber une valeur de x et de y qui convient.

Solution: Vrai

5. Pour y quelconque, exhiber une valeur de x qui convient.

Solution: Vrai

1. Exhiber un contre-exemple.

Solution: Faux

2. Exhiber une valeur de x qui convient.

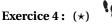
Solution : Vrai

3. Pour *x* quelconque, exhiber une valeur de *y* qui convient.

Solution: Vrai

4. Montrer la négation.

Solution : Faux



• On montre que $\exists x \in \mathbb{R}^*$, $\forall y \in \mathbb{R}^*$, $\forall z \in \mathbb{R}^*$, z = xy est faux. Supposons qu'il existe $x \in \mathbb{R}^*$ tel que : $\forall y \in \mathbb{R}^*$, $\forall z \in \mathbb{R}^*$, z = xy. En particulier, pour $y = \dots$ et $z = \dots$, on a $x = \dots$

Recommencer en choisissant d'autres valeurs de y et z afin d'obtenir deux valeurs de x ce qui donne une contradiction.

• On montre que $\forall y \in \mathbb{R}^*, \exists x \in \mathbb{R}^*, \forall z \in \mathbb{R}^*, z = xy$ est faux.

Supposons que $\forall y \in \mathbb{R}^*, \exists x \in \mathbb{R}^*, \forall z \in \mathbb{R}^*, z = xy$.

Posons y = ..., alors il existe $x \in \mathbb{R}^*$ tel que $\forall z \in \mathbb{R}^*$, z = xy.

Posons $z = \dots$, on a $x = \dots$

Recommencer en choisissant une autre valeur de z afin d'obtenir deux valeurs de x ce qui donne une contradiction.

• On montre que $\forall z \in \mathbb{R}^*$, $\exists x \in \mathbb{R}^*$, $\forall y \in \mathbb{R}^*$, z = xy est faux.

Supposons que $\forall z \in \mathbb{R}^*, \exists x \in \mathbb{R}^*, \forall y \in \mathbb{R}^*, z = xy$.

Posons z = ..., alors il existe $x \in \mathbb{R}^*$ tel que $\forall y \in \mathbb{R}^*$, z = xy.

Posons y = ..., on a x = ...

Recommencer en choisissant une autre valeur de y afin d'obtenir deux valeurs de x ce qui donne une contradiction.

• On montre que $\forall y \in \mathbb{R}^*, \forall z \in \mathbb{R}^*, \exists x \in \mathbb{R}^*, z = xy$ est vrai.

Soit $y \in \mathbb{R}^*$, soit $z \in \mathbb{R}^*$, posons $x = \dots$

Vérifier que *x* convient.

Solution:

 $\exists x \in \mathbb{R}^*, \forall y \in \mathbb{R}^*, \forall z \in \mathbb{R}^*, z = xy : faux$

 $\forall\,y\in\mathbb{R}^*,\,\exists x\in\mathbb{R}^*,\,\forall z\in\mathbb{R}^*,\,z=xy:faux$

 $\forall z \in \mathbb{R}^*, \exists x \in \mathbb{R}^*, \forall y \in \mathbb{R}^*, z = xy : faux$

 $\forall y \in \mathbb{R}^*, \forall z \in \mathbb{R}^*, \exists x \in \mathbb{R}^*, z = xy : vrai$

Exercice 5:

Raisonner par l'absurde et sommer les deux nombres.

Exercice 6: (*)

Soit $n \in \mathbb{N}^*$. On raisonne par l'absurde.

Supposons que $\sqrt{n^2+1} \in \mathbb{N}$. Posons $m = \sqrt{n^2+1}$.

Calculer $m^2 - n^2$ pour montrer que (m - n)(m + n) = 1.

Comme $m-n \in \mathbb{Z}$ et $m+n \in \mathbb{N}$, la seule solution possible est m-n=m+n=1.

Résoudre ces équations, et arriver à la contradiction que m ou n n'est pas entier.

III Généralités sur les suites et les fonctions

Exercice 7: (\star)

- 1. *Solution*: f est définie sur $\mathbb{R} \setminus \{-1,0,1\}$ et est impaire.
- 2. *Solution*: f est définie sur $]1,+\infty[$ et n'est ni paire ni impaire.
- 3. *Solution* : f est définie sur \mathbb{R}^* et est impaire.

Exercice 8:

Utiliser les définitions.

IV Logique

Exercice 9: (*)

Remarquer que $a^2 + ab + b^2 = \left(a + \frac{b}{2}\right)^2 + \frac{3}{4}b^2$.

Exercice 10: (*)

Raisonner par l'absurde et poser une valeur de ε permettant d'obtenir une contradiction.

Exercice 11: (*)

Raisonner par contraposée.

Exercice 12: (*)

Raisonner par l'absurde et poser une valeur de ε permettant d'obtenir une contradiction.

Exercice 13: (*)

Raisonner par contraposée et utiliser la définition de Q.

Exercice 14: (**)

Raisonner par l'absurde et utiliser que : $\forall j \in [1, n], x_j \le \max(x_1, ..., x_n)$ et sommer ces inégalités.

Exercice 15: (★★)

- 1. (a) Faire le cas où n est pair et le cas où n est impair.
 - (b) *Solution* : $\exists k \in \mathbb{N}$, n = 8k
- 2. (a) Solution: "si l'entier n est impair alors $n^2 1$ est divisible par 8".
 - (b) Factoriser $n^2 1$ et utiliser 1.a
 - (c) Solution: P est vraie

Exercice 16: (★★)

Raisonner par double implication. Pour \Rightarrow , on pourra raisonner par l'absurde.

V Monotonie

Exercice 17: (\star)

- 1. Raisonner par récurrence.
- 2. Etudier le signe de $u_{n+1} u_n$ en utilisant l'expression conjuguée. On se ramène à l'étude du signe d'un polynôme de degré 2.

Exercice 18: $(\star\star)$

Raisonner par l'absurde pour montrer une des deux implications.

Exercice 19: $(\star\star)$

On raisonne par l'absurde. Supponsons que f ne soit pas strictement décroissante (et pas que f est croissante), c'est-à-dire, en écrivant la négation de la proposition logique, qu'il existe $x_1, x_2 \in \mathbb{R}$ tels que $x_1 < x_2$ et $f(x_1) \le f(x_2)$.

En utilisant les deux hypothèses, montrer que $f \circ f \circ f(x_1) \le f \circ f \circ f(x_2)$ et que $f \circ f \circ f(x_1) > f \circ f \circ f(x_2)$ ce qui donne une contradiction.

VI Systèmes linéaires

Exercice 20:

Solution: $\{(-8+11z,5-7z,z), z \in \mathbb{R}\}$

Exercice 21:

Solution : $\{(2-a, -5+3a+z, z), z \in \mathbb{R}\}\$ *si* a+b=3, \emptyset *sinon*.

Exercice 22:

Solution : $\left\{ (-\frac{m-1}{m}y + \frac{m+2}{m}, y), y \in \mathbb{R} \right\}$ si $m = \pm \frac{1}{\sqrt{2}}, \{(3, -2)\}$ sinon.

Exercice 23: (*)

Solution: $\{\left(-\frac{2}{m-1}, \frac{3m}{m-1}, -\frac{1}{m-1}\right)\}\ si\ m \neq 1\ et\ m \neq -\frac{3}{2}$ $\{(2z, 1+2z, z),\ z \in \mathbb{R}\}\ si\ m = -\frac{3}{2}$ $\emptyset\ si\ m = 1.$

Exercice 24: (*)

Solution: $\{(m, 1, \frac{1}{m})\}$ si $m \notin \{0, 1, -1\}$ $\{(1, z, z), z \in \mathbb{R}\}$ si m = 1 $\{(-1, -z, z), z \in \mathbb{R}\}$ si m = -1 \emptyset si m = 0.

VII Principe de récurrence

Exercice 25:

Raisonner par récurrence.

Exercice 26:

Raisonner par récurrence en remarquant que $3^{2(n+1)} - 2^{n+1} = (7+2) \cdot 3^{2n} - 2 \cdot 2^n$.

Exercice 27:

Raisonner par récurrence en remarquant que $7^{n+1} - 1 = (6+1) \cdot 7^n - 1$.

Exercice 28: (★★)

- 1. Raisonner par récurrence en remarquant que $2^{2^{n+1}} 6 = ((2^{2^n} 6) + 6)^2 6$.
- 2. Montrer par récurrence que : pour tout $n \in \mathbb{N}$, $n^3 + (n+1)^3 + (n+2)^3$ est divisible par 9.

VIII Suites arithmétiques, suites géométriques, suites arithmético-géométriques

Exercice 29: (*)

- 1. Raisonner par récurrence.
- 2. Exprimer v_{n+1} en fonction de v_n . Solution: (v_n) est arithmétique de raison $\frac{3}{2}$.
- 3. Solution: $\forall n \in \mathbb{N}, v_n = 1 + \frac{3}{2}n \text{ et } \forall n \in \mathbb{N}, u_n = \frac{2}{2+3n}$.

Exercice 30: (★)

- 1. Raisonner par récurrence et étudier le signe de u_{n+1} 2.
- 2. Solution: (v_n) est géométrique de raison $\frac{3}{2}$.
- 3. Solution: $\forall n \in \mathbb{N}, \ v_n = \frac{3^{n-1}}{2^{n-2}} \ et \ \forall n \in \mathbb{N}, \ u_n = \frac{2^{n-2} 2 \cdot 3^{n-1}}{2^{n-2} 3^{n-1}}.$

Exercice 31:

Etudier la suite $(u_n - 3)$.

Solution: $\forall n \in \mathbb{N}, u_n = 3 - \frac{1}{3^{n-1}}$

Exercice 32:

Etudier la suite $(u_n - 2)$.

Solution: $\forall n \in \mathbb{N}, u_n = 2 - (-1)^n$

Exercice 33: (*)

Exprimer v_{n+1} en fonction de v_n et remarquer que (v_n) est arithmético-géométrique.

Solution : $v_n = 3.2^n - 1$ *et* $u_n = 3.2^n - 1 + n$.

IX Fonctions périodiques

Exercice 34: (\star) On peut montrer que f et g sont T_1T_2 périodique puis que f+g est T_1T_2 périodique.

X Autres principes de récurrence

Exercice 35:

Raisonner par récurrence à deux niveaux.

Exercice 36:

Raisonner par récurrence à trois niveaux.

Exercice 37: (★)

Montrer par récurrence à deux niveaux que :

 $\forall n \in \mathbb{N}, u_n < u_{n+1}.$

Exercice 38: (**)

Raisonner par récurrence à deux niveaux. On pourra remarquer que :

 $x^{n+2} + \frac{1}{x^{n+2}} = \left(x^{n+1} + \frac{1}{x^{n+1}}\right) \left(x + \frac{1}{x}\right) - \left(x^n + \frac{1}{x^n}\right).$

Exercice 39: (*)

Raisonner par récurrence forte.

Exercice 40: $(\star\star)$

Raisonner par récurrence forte.

Exercice 41: $(\star \star \star)$

Raisonner par récurrence forte en traitant les cas où n+1 est pair et n+1 est impair.

XI Suites récurrentes linéaires d'ordre 2

Exercice 42:

Utiliser l'équation caractéristique.

Solution: $\forall n \in \mathbb{N}, u_n = \frac{1+17n}{2^n}.$

Exercice 43: (*)

Solution: $u_n = \frac{1}{3}(u_0 + 2u_1) + \frac{2(u_0 - u_1)}{3(-2)^n}$

XII Raisonnement par analyse-synthèse

Exercice 44: (*)

Raisonner par analyse-synthèse. On cherchera d'abord la valeur de g pour en déduire celle de h.

Solution: $g: x \mapsto f(0)$ et $h: x \mapsto f(x) - f(0)$

Exercice 45: (★★)

Raisonner par analyse-synthèse. On cherchera d'abord la valeur de g en intégrant la relation f = g + h, pour en déduire celle de h.

Solution: $g: x \mapsto 2x \cdot \int_0^1 f \ et \ h: x \mapsto f(x) - 2x \cdot \int_0^1 f$

Exercice 46: (**)

Analyse:

 $\overline{\text{Supposo}} \text{ns qu'il existe } f: \mathbb{R} \to \mathbb{R} \text{ telle que}: \forall g \in \mathcal{F}(\mathbb{R}, \mathbb{R}), f \circ g = g \circ f.$

Soit $x \in \mathbb{R}$. En posant g la fonction constante égale à x, montrer que f(x) = x.

 $Synth\`ese:$

Posons $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto x$. Montrer que f convient, c'est à dire que pour toute fonction g (et pas seulement pour g constante), $f \circ g = g \circ f$.

Solution : $f : \mathbb{R} \to \mathbb{R}$, $x \mapsto x$.

Exercice 47: $(\star\star)$

Raisonner par analyse-synthèse. Pour l'analyse : choisir des valeurs particulières de x dans la relation : f(x) = ax + b. Pour la synthèse, choisir des valeurs particulières de x, y et z dans la relation $\frac{f(x) - f(y)}{x - y} = \frac{f(x) - f(z)}{x - z}$.

Exercice 48: $(\star \star \star)$

Raisonner par analyse-synthèse. Dans l'analyse, introduire la suite définie par : $u_0 = x > 0$ et $\forall n \in \mathbb{N}$, $u_{n+1} = f(u_n)$. Remarquer que cette suite est récurrente linéaire d'ordre 2.