Indications du chapitre 2 : Etude de fonctions, fonctions logarithmes, exponentielle et puissances

Continuité

Dérivation

Exercice 1:

Solution: $\forall x \in \mathbb{R} \setminus \{1,2\}, f_1'(x) = -\frac{x^2-2}{(x^2-3x+2)^2}, \ \forall x \in]-\infty, 2[, f_2'(x) = \frac{4-x}{2(2-x)\sqrt{2-x}} \ et \ \forall x \in \mathbb{R},$ $f_3(x) = \frac{\sqrt{x + \sqrt{x^2 + 1}}}{2\sqrt{x^2 + 1}}.$

Solution: $f'(x) = -\frac{2(x-2)}{(x-1)^3}$

Exercice 3: (*)

Solution: $f'(x) = \frac{1}{2\sqrt{(x-1)(2-x)^3}}$.

Exercice 4: (*)

Etudier le signe de f'. On peut comparer f(0) et f(2).

Solution : f n'est pas décroissante sur son ensemble de définition.

Exercice 5: (*)

Etudier $x \mapsto 2x\sqrt{1-x^2}$.

Exercice 6: (*)

Etudier $x \mapsto x^4 - x^2 - 2x - 2$.

III Bijectivité

Montrer que f est strictement monotone.

Solution: f est bijective de $]0, +\infty[$ vers $]5, +\infty[$.

Exercice 8: (*)

Résoudre l'équation f(x) = y.

Solution: f^{-1} : $\mathbb{R} \setminus \{1\}$ \rightarrow $\mathbb{R} \setminus \{2\}$ $x \mapsto \frac{2x+1}{x-1}$

Exercice 9: (\star)

1. Exhiber un contre-exemple. *Solution*: *f* n'est pas bijective.

2. Résoudre l'équation g(x) = y où $x \in \mathbb{R}^+$ et $y \in [-1, 1[$.

Solution: $g^{-1}: [-1,1[\rightarrow \mathbb{R}^+ \\ x \mapsto \sqrt{\frac{1+x}{1-x}}]$

Exercice 10:

1. Etudier les variations de f. *Solution* : $f'(t) = -\frac{1}{t^2} - 2t$.

2. Montrer que f' ne s'annule pas et appliquer la formule de dérivation de la réciproque.

Solution: g est dérivable sur $[0, +\infty[$ et $g'(t) = -\frac{g(t)^2}{2g(t)^3 + 1}$.

Exercice 11: (\star)

1. Etudier la fonction *f* .

2. Etudier les points d'annulation de f'. Solution: f^{-1} est dérivable sur $]-\infty,1[$.

3. Utiliser la formule de la dérivée de la réciproque et remarquer que f(1) = 1 - e. Solution: $(f^{-1})'(1-e) = -\frac{1}{2a}$

Exercice 12: (\star)

Solution: $\forall x \in \mathbb{R}^{+*}$, $f'(x) = -\frac{2}{3}x^{-5/3} + \frac{3}{3}x^{-5/2}$.

IV Fonctions logarithmes, exponentielle, puissances

Exercice 13:

1. Solution : $x \mapsto \frac{1}{2x\sqrt{\ln x}}$ 4. Solution : $x \mapsto -\frac{e^x}{(e^x + 1)^2}$ 2. Solution : $x \mapsto \frac{2x(\ln x - 1)}{(\ln(x))^3}$ 5. Solution : $x \mapsto (1 - 2x)e^{-2x}$ 3. Solution : $x \mapsto \frac{1}{x\ln(x)}$ 6. Solution : $x \mapsto \frac{2xe^{2x}}{(x+1)^3}$

Exercice 14: (*)

Ne pas oublier de déterminer le domaine de définition de l'inéquation.

Solution: $]1,\sqrt{\frac{e}{e-1}}[.$

Exercice 15: (*)

Montrer que f est continue et strictement croissante sur $\mathbb R$ et déterminer ses limites en $\pm \infty$. Solution : $\forall x \in \mathbb R^{+*}$, $f^{-1}(x) = \ln(e^x - 1)$.

Exercice 16:

Etudier la fonction $x \mapsto e^x - (1 + x + \frac{x^2}{2})$.

Exercice 17:

1. Solution:0

2. Factoriser par x^2 dans le logarithme. *Solution*: 0

 $3. \ \textit{Solution}: 0$

Exercice 18: (*)

- 1. Solution: la fonction est croissante sur $]0, e^{-1/2}]$ et décroissante sur $[e^{-1/2}, +\infty[$ et tend $vers -\infty$ en 0 et vers 0 en $+\infty$.
- 2. Solution: la fonction est croissante sur \mathbb{R} , tend vers -1 en $-\infty$ et vers 1 en $+\infty$.

Exercice 19: (\star)

- 1. Etudier les variations de *g* et appliquer le théorème de la bijection à la fonction *g* sur un intervalle bien choisi.
- 2. Solution : g est négative sur] $-\infty$, α] et positive sur [α , $+\infty$ [.
- 3. Exprimer f' en fonction de g. Solution: f est décroissante $sur [0, \alpha]$ et croissante $sur [\alpha, +\infty[$.

4. Remarquer que f admet un mininum égal à $f(\alpha)$.

Exercice 20: (★★)

Calculer f' et étudier le signe de $g: x \mapsto a(1+bx)\ln(1+bx) - b(1+ax)\ln(1+ax)$. Comparer $f\left(\frac{1}{a}\right)$ et $f\left(\frac{1}{b}\right)$.

Exercice 21:

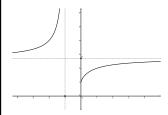
Regrouper les puissances de 2 d'un côté et les puissances de 3 de l'autre.

Solution : $x = \frac{\hat{3}}{2}$

Exercice 22: (*)

Traduire les puissances en exponentielles et logarithmes.

Solution:



Exercice 23: (*) Ecrire $f(x) = \exp\left(\frac{x}{x-1}\ln x\right)$. On a: $f'(x) = \frac{x-1-\ln x}{(x-1)^2} > 0$. Solution: f est strictement croissante sur [0,1[et sur $]1,+\infty[$.