Indications du chapitre 4: **Trigonométrie**

I Cercle trigonométrique

Exercice 1: (*)

Utiliser les formules $\cos(a-b)$ et $\sin(a-b)$. Solution : $\cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{6} + \sqrt{2}}{4}$ et $\sin\left(\frac{\pi}{12}\right) = \frac{\sqrt{6} - \sqrt{2}}{4}$.

Exercice 2: (*)

Remarquer que $\cos x + \sqrt{3} \sin x = 2 \cos \left(x - \frac{\pi}{3}\right)$

Exercice 3: $(\star\star)$

Raisonner par récurrence.

II Équations et inéquations trigonométriques

Exercice 4:

Se ramener à un produit nul.

Solution: $\{k\pi, k \in \mathbb{Z}\} \cup \{\pm \frac{2\pi}{3} + 2k\pi, k \in \mathbb{Z}\}$

Exercice 5: (*)

Poser $X = \cos(2x)$ et se ramener à un polynôme du second degré.

Solution : $\{k\pi, k \in \mathbb{Z}\} \cup \{\pm \frac{\pi}{6} + k\pi, k \in \mathbb{Z}\}$

Exercice 6: (*)

Transformer le sinus en cosinus.

Solution: $\{\frac{\pi}{4} + k\pi, k \in \mathbb{Z}\} \cup \{-\frac{\pi}{8} + \frac{k\pi}{2}, k \in \mathbb{Z}\}$

Exercice 7: $(\star\star)$

Se ramener à un produit nul.

Solution: $\{\frac{\pi}{4} + k\pi, k \in \mathbb{Z}\} \cup \{-\frac{\pi}{2} + 2k\pi, k \in \mathbb{Z}\} \cup \{\frac{2k\pi}{2}, k \in \mathbb{Z}\}$

Exercice 8:

1. Solution: $\bigcup_{k \in \mathbb{Z}} \left] - \frac{\pi}{2} + 2k\pi, \frac{\pi}{2} + 2k\pi \right[$

2. Solution: $\bigcup_{k=7}^{7} \left[-\frac{7\pi}{6} + 2k\pi, \frac{\pi}{6} + 2k\pi \right]$

Exercice 9: (\star)

Se ramener à une équation du second degré.

Solution: $\bigcup_{k\in\mathbb{Z}} \left] -\frac{7\pi}{6} + 2k\pi, \frac{\pi}{6} + 2k\pi \right[$

III Fonctions cosinus et sinus

Exercice 10:

Solution: $f'(x) = -6\cos(x)\sin^2(x)$, f est croissante sur $[-\pi, -\frac{\pi}{2}]$ et sur $[\frac{\pi}{2}, \pi]$ et décroissante $sur[-\frac{\pi}{2},\frac{\pi}{2}].$

Exercice 11: (*) Pour étudier le signe de la dérivée, se ramener au signe d'un polynôme du second degré.

Solution: $f'(x) = 4\cos^2(x) + 2\cos(x) - 2$, $f est 2\pi$ -périodique, impaire, croissante sur $[0, \frac{\pi}{2}]$ et décroissante sur $\left[\frac{\pi}{3},\pi\right]$.

Exercice 12: $(\star\star)$ Solution: $f'(x) = 2\sin x \left(\cos x + \frac{\sqrt{2}}{2}\right)$, f est croissante sur $[0, \frac{3\pi}{4}]$ et décroissante sur $\left[\frac{3\pi}{4},\pi\right]$.

Exercice 13: $(\star\star)$

1. Solution: $2e^{-x}\cos(x-\frac{\pi}{2})$

2. Calculer f'(x) et l'écrire sous forme d'un produit. Solution: $f'(x) = -2\sqrt{2}e^{-x}\cos\left(x - \frac{7\pi}{12}\right)$, f est strictement décroissante sur $\left[\frac{\pi}{12} + 2k\pi, \frac{13\pi}{12} + 2k\pi\right]$ pour tout $k \in \mathbb{Z}$ et f est strictement croissante sur $\left[\frac{13\pi}{12} + 2k\pi, \frac{25\pi}{12} + 2k\pi\right]$ pour tout $k \in \mathbb{Z}$.

Exercice 14: $(\star\star)$

1. Solution: $g_n(x) = \cos(x) - nx\sin(x)$.

2. Solution : g_n est décroissante.

3. Utiliser le théorème des valeurs intermédiaires pour montrer que g_n s'annule.

IV Tangente

Exercice 15: (\star)

1. Solution: $\mathbb{R} \setminus \{\frac{\pi}{4} + k\frac{\pi}{2}, k \in \mathbb{Z}\}$

2. Solution : f est π -périodique.

- 3. Utiliser f(0) pour montrer que f n'est pas impaire. Raisonner par l'absurde pour montrer que f n'est pas paire en utilisant, par exemple, les valeurs en $\pm \frac{\pi}{6}$. Solution: f n'est ni paire ni impaire.
- 4. Utiliser les formules de trigonométrie.
- 5. Solution: f est strictement croissante sur $\left] \frac{\pi}{4}, \frac{\pi}{4} \right[$ et sur $\left[\frac{\pi}{4}, \frac{3\pi}{4} \right[$.

Exercice 16: $(\star\star)$

- 1. *Solution* : $\mathbb{R} \setminus \{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}$
- 2. Solution : f est π -périodique.
- 3. *Solution : f est impaire.*
- 4. Pour étudier le signe de la dérivée, se ramener au signe d'un polynôme du second degré en $\cos^2 x$.

Solution: $f'(x) = \frac{4\cos^4 x - 2\cos^2 x - \frac{3}{4}}{\cos^2 x}$, f est strictement croissante sur $\left[0, \frac{\pi}{6}\right]$ et strictement décroissante sur $\left[\frac{\pi}{6}, \frac{\pi}{2}\right]$.

Exercice 17: (★★)

Appliquer le théorème des valeurs intermédiaires à $f: x \mapsto \tan(x) + \tan(2x) + \tan(3x)$ sur de intervalles bien choisis.

Solution: L'équation a 6 solutions.

Exercice 18: $(\star \star \star)$ *Solution*: $f'(x) = \frac{\tan(x)(4+\cos x+\cos^2 x)\sqrt{1-\cos x}}{2\cos^2 x}$, f est croissante sur $[0, \frac{\pi}{2}[$ et décroissante sur $]\frac{\pi}{2},\pi]$.

V Fonctions cosinus et sinus hyperboliques

Exercice 19: (★)

Dériver deux fois $x \mapsto \operatorname{ch} x - 1 - \frac{x^2}{2}$.

Exercice 20: (★)

Pour étudier le signe de f', utiliser la croissance de sh.

 $Solution: f \ {\rm est} \ {\rm d\'ecroissante} \ {\rm sur} \] - \infty, 0] \ {\rm et} \ {\rm croissante} \ {\rm sur} \ [0, + \infty[.$

Exercice 21: $(\star\star)$

- 1. Utiliser la forme exponentielle et se ramener à une équation d'ordre 2 en e^x . Solution : $\ln(2+\sqrt{5})$.
- 2. Utiliser la question précédente et la monotonie de sh. *Solution*: $]-\infty, \ln(2+\sqrt{5})].$
- 3. Utiliser la forme exponentielle et se ramener à une équation d'ordre 2 en e^x . *Solution* : $\ln(2+\sqrt{3})$, $\ln(2-\sqrt{3})$.

4. Utiliser la question précédente et la monotonie de ch. *Solution* : $[\ln(2-\sqrt{3}), \ln(2+\sqrt{3})]$.

Exercice 22:

Utiliser la définition avec les exponentielle.

Exercice 23: (**)

1. (a) Montrer que f est continue, strictement monotone donc bijective de ...vers

(b) Soit $x \in \mathbb{R}^+$, $f\left(\ln(x + \sqrt{x^2 - 1})\right) = \frac{\exp\left(\ln(x + \sqrt{x^2 - 1})\right) + \exp\left(-\ln(x + \sqrt{x^2 - 1})\right)}{2}$. Ainsi $f(x) = \frac{(x + \sqrt{x^2 - 1}) + \frac{1}{x + \sqrt{x^2 - 1}}}{2} = \dots = x$.

- 2. (a) Montrer que sh est continue, strictement monotone donc bijective de ...vers
 - (b) De même, calculer sh $(\ln(x + \sqrt{x^2 + 1}))$.

VI Fonctions circulaires réciproques

Exercice 24: (*)

Etudier $f: x \mapsto \operatorname{Arccos} \frac{1-x^2}{1+x^2} - 2\operatorname{Arctan} |x| \operatorname{sur} \mathbb{R}^{+*}$.

Exercice 25: (**)

Calculer la dérivée de la fonction apparaissant dans le membre de gauche. Solution:]-1,1]

Exercice 26: (**)

Calculer la dérivée de la fonction apparaissant dans le membre de gauche. Solution : \mathbb{R}

Exercice 27: (★★)

Dériver $x \mapsto \operatorname{Arcsin} \sqrt{1-x^2} - \operatorname{Arctan} \sqrt{\frac{1-x}{1+x}}$ et utiliser la continuité et la valeur en 0 pour déterminer les constantes.

Exercice 28: (*)

1. Solution:

2. Solution:

Exercice 29: (*)

Faire une étude de fonctions.

Exercice 30: $(\star\star)$

- 1. *Solution* : $\mathbb{R} \setminus \{k\pi, k \in \mathbb{Z}\}$.
- 2. *Solution* : f est 2π -périodique et impaire.
- 3. *Solution*: $\frac{1-\cos x}{\sin x} = \tan \frac{x}{2}$
- 4. Solution: $f(x) = \frac{x}{2}$
- 5. Utiliser la parité puis la périodicité.
- 6. Solution: $f\left(\frac{3\pi}{2}\right) = -\frac{\pi}{4}$.

Exercice 31: (*)

Utiliser les formules de trigonométrie.

- 1. Solution: $\frac{1-6x^2+x^4}{(1+x^2)^2}$
- 2. Solution: $\frac{x(3-x^2)}{(1+x^2)^{3/2}}$

Exercice 32: (★★)

- En utilisant la formule donnant tan(a+b), montrer que : $tan(Arctan x + Arctan y) = \frac{x+y}{1-xy}$.
- En déduire qu'il existe $k \in \mathbb{Z}$ tel que : Arctan x + Arctan y = Arctan $\frac{x+y}{1-xy}$ + $k\pi$.
- Comme Arctan x, Arctan y, Arctan $\frac{x+y}{1-xy} \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, montrer que $k \in \{-1,0,1\}$.

- Si Arctan x + Arctan $y \in \left] -\pi, -\frac{\pi}{2} \right[$, remarquer que k = -1 et que Arctan $\frac{x+y}{1-xy} \in \left] 0, \frac{\pi}{2} \right[$. On a donc Arctan x < Arctan (-y) donc x < -y, ainsi x + y < 0. De plus $\frac{x+y}{1-xy} > 0$. En déduire le signe de 1-xy.
- Si Arctan x + Arctan $y \in \left] -\frac{\pi}{2}$, 0 $\left[$, raisonner de même.
- Si Arctan x + Arctan $y \in \left[0, \frac{\pi}{2}\right[$, raisonner de même.
- Si Arctan x + Arctan $y \in \left[\frac{\pi}{2}, \pi\right[$, raisonner de même.

Exercice 33: $(\star\star)$

- 1. Appliquer la fonction cosinus. *Solution* : $\{\frac{\sqrt{5}}{5}\}$
- 2. Appliquer la fonction sinus. Solution : $\left[-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right]$

Exercice 34: (★★)

- 1. Appliquer la fonction tangente. Solution : $\{\frac{-3+\sqrt{17}}{4}\}$
- 2. Appliquer la fonction sinus. *Solution* :{0, $\frac{\sqrt{14}}{8}$, $-\frac{\sqrt{14}}{8}$ }

Exercice 35: (**)

Montrer que $\tan \left(4 \operatorname{Arctan} \frac{1}{5} - \operatorname{Arctan} \frac{1}{239}\right) = 1$ puis effectuer des encadrements.