Programme de colles Semaine 1 du 15 septembre au 19 septembre

Cours:

- Chapitre 1 : Rudiments de logique, généralités et révisions sur les suites et les fonctions
 - I Bases des mathématiques
 - **II Quantificateurs**
 - III Généralités sur les suites et les fonctions
 - IV Logique
 - V Monotonie
 - VI Systèmes linéaires
 - VII Principe de récurrence
 - VIII Suites arithmétiques, suites géométriques, suites arithmético-géométriques
 - IX Fonctions périodiques
 - X Autres principes de récurrence
 - XI Suites récurrentes linéaires d'ordre 2
 - XII Raisonnement par analyse-synthèse

Questions de cours et exercices type :

 $\mathbf{Q_1}$: Valeur de f(x+nT), $n \in \mathbb{Z}$ pour une fonction T-périodique (ch1, proposition 12)

 T_1 : Ch1, exemple 6

Montrer que $\sqrt{2}$ est irrationnel.

 T_1 : *Ch1*, exemple 7

Soit f une fonction continue sur [0,1] telle que $f^2=f$. Montrer que f=0 ou f=1.

 T_3 : Ch1, exemple 21

On pose :
$$u_0 = 1$$
 et $\forall n \in \mathbb{N}$, $u_n = \begin{cases} u_{\frac{n}{2}}^2 & \text{si } n \text{ est pair,} \\ 3u_{\frac{n-1}{2}}^2 & \text{si } n \text{ est impair.} \end{cases}$.

Montrer que : $\forall n \in \mathbb{N}$, $u_n = 3^n$.

 T_4 : Ch1, exemple 27

Soit $f \in \mathcal{F}(\mathbb{R}, \mathbb{R})$, montrer que :

$$\exists ! (g,h) \in \mathcal{P}(\mathbb{R}) \times \mathcal{I}(\mathbb{R}), f = g + h,$$

où $\mathcal{P}(\mathbb{R})$ désigne l'ensemble des fonctions paires sur \mathbb{R} , $\mathcal{I}(\mathbb{R})$ désigne l'ensemble des fonctions impaires sur \mathbb{R} et $(g,h) \in \mathcal{P}(\mathbb{R}) \times \mathcal{I}(\mathbb{R})$ signifie que $g \in \mathcal{P}(\mathbb{R})$ et $h \in \mathcal{I}(\mathbb{R})$.

Programme de colles Semaine 1 du 15 septembre au 19 septembre

Cours:

- Chapitre 1 : Rudiments de logique, généralités et révisions sur les suites et les fonctions
 - I Bases des mathématiques
 - **II Quantificateurs**
 - III Généralités sur les suites et les fonctions
 - IV Logique
 - V Monotonie
 - VI Systèmes linéaires
 - VII Principe de récurrence
 - VIII Suites arithmétiques, suites géométriques, suites arithmético-géométriques
 - IX Fonctions périodiques
 - X Autres principes de récurrence
 - XI Suites récurrentes linéaires d'ordre 2
 - XII Raisonnement par analyse-synthèse

Questions de cours et exercices type :

 $\mathbf{Q_1}$: Valeur de f(x+nT), $n \in \mathbb{Z}$ pour une fonction T-périodique (ch1, proposition 12)

 T_1 : Ch1, exemple 6

Montrer que $\sqrt{2}$ est irrationnel.

 T_1 : *Ch1*, exemple 7

Soit f une fonction continue sur [0,1] telle que $f^2=f$. Montrer que f=0 ou f=1.

 T_3 : Ch1, exemple 21

On pose :
$$u_0 = 1$$
 et $\forall n \in \mathbb{N}$, $u_n = \begin{cases} u_{\frac{n}{2}}^2 & \text{si } n \text{ est pair,} \\ 3u_{\frac{n-1}{2}}^2 & \text{si } n \text{ est impair.} \end{cases}$.

Montrer que : $\forall n \in \mathbb{N}$, $u_n = 3^n$.

 T_4 : Ch1, exemple 27

Soit $f \in \mathcal{F}(\mathbb{R}, \mathbb{R})$, montrer que :

$$\exists ! (g,h) \in \mathcal{P}(\mathbb{R}) \times \mathcal{I}(\mathbb{R}), f = g + h,$$

où $\mathcal{P}(\mathbb{R})$ désigne l'ensemble des fonctions paires sur \mathbb{R} , $\mathcal{I}(\mathbb{R})$ désigne l'ensemble des fonctions impaires sur \mathbb{R} et $(g,h) \in \mathcal{P}(\mathbb{R}) \times \mathcal{I}(\mathbb{R})$ signifie que $g \in \mathcal{P}(\mathbb{R})$ et $h \in \mathcal{I}(\mathbb{R})$.