Programme de colles Semaine 6 du 3 novembre au 7 novembre

Cours:

• Chapitre 6 : Calcul algébrique

I Sommes

II Produits

III Sommes doubles

IV Coefficients binomiaux et formule du binôme de Newton

• Chapitre 7: Nombres complexes

I Ensemble des nombres complexes

II Module

III Nombres complexes de module 1 et trigonométrie

IV Argument d'un nombre complexe non nul

V Equations algébriques

VI Racines *n*-ièmes

VII Exponentielle complexe

VIII Dérivation d'une fonction complexe d'une variable réelle

IX Interprétation géométrique des nombres complexes

Questions de cours et exercices type :

Q₁: Formule du binôme de Newton (ch6, théorème 1)

 $\mathbf{Q_2}$: Inégalité triangulaire dans $\mathbb C$ et cas d'égalité (ch7, proposition 11)

 \mathbf{Q}_3 : Ensemble des racines n-ièmes de l'unité (ch7, proposition 29)

 T_1 : Ch6, exemple 15

Soit
$$n \in \mathbb{N}^*$$
, calculer : $\sum_{i,j \in [\![1,n]\!]} \min(i,j)$.

T₂: *Ch7*, *exemple 12*

Soit $n \in \mathbb{N}$, soit $t \in \mathbb{R}$. Calculer:

$$\sum_{k=0}^{n} \cos(kt) \text{ et } \sum_{k=0}^{n} \sin(kt).$$

Programme de colles Semaine 6 du 3 novembre au 7 novembre

Cours:

• Chapitre 6 : Calcul algébrique

I Sommes

II Produits

III Sommes doubles

IV Coefficients binomiaux et formule du binôme de Newton

• Chapitre 7: Nombres complexes

I Ensemble des nombres complexes

II Module

III Nombres complexes de module 1 et trigonométrie

IV Argument d'un nombre complexe non nul

V Equations algébriques

VI Racines *n*-ièmes

VII Exponentielle complexe

VIII Dérivation d'une fonction complexe d'une variable réelle

IX Interprétation géométrique des nombres complexes

Questions de cours et exercices type :

Q₁: Formule du binôme de Newton (ch6, théorème 1)

 $\mathbf{Q_2}$: Inégalité triangulaire dans $\mathbb C$ et cas d'égalité (ch7, proposition 11)

 \mathbf{Q}_3 : Ensemble des racines n-ièmes de l'unité (ch7, proposition 29)

 T_1 : Ch6, exemple 15

Soit
$$n \in \mathbb{N}^*$$
, calculer : $\sum_{i,j \in [\![1,n]\!]} \min(i,j)$.

T₂: *Ch7*, *exemple 12*

Soit $n \in \mathbb{N}$, soit $t \in \mathbb{R}$. Calculer:

$$\sum_{k=0}^{n} \cos(kt) \text{ et } \sum_{k=0}^{n} \sin(kt).$$