pd V4
Chapitre 14 : Dérivabilité
Dans tout le chapitre I désignera un intervalle de R non vide et non réduit a un point.

I Nombre dérivé, fonction dérivée

1.1 Dérivabilité en un point, nombre dérivé

Définition 1

Soit f: I — R une fonction. Soient x, a € I avec x # a. Le taux d’accroissement entre x et a est le rapport :

fx)-fla)

X—a

Remarque : Le taux d’accroissement est la pente de la sécante entre les points d’abscisses x et a.

—4 Définition 2

Soit f: I — Rune fonction. On dit que f est dérivable en a si et seulement si son taux d’accroissement en a :

I\{a} — R
fx)-fla)

X—a

X

admet une limite finie en a. Cette limite, lorsqu’elle existe, est appelé nombre dérivée de f en a. Il est noté f'(a) :

f'(@) = lim fw-f@ .

X—a XxX—a

Remarque:
* Le nombre dérivée est la pente de la tangente au point d’abscisse a.
o L'équation de la tangente au point d’abscisse a est :

y=f@x-a)+ f(a).

» Par composition des limites, on a:
. fla+h-f(a@
(@) = tim L&D 1@
fla hli% h
Ainsi :
fa+h) = f(a)+ f'(@h+ heh),
avec : }liII(l) e(h)=0.
11 s’agit du développement limité de f al'ordre 1 en a.

> Exemple 1: Soient n € N* et a € R, soit f: x— x". Etudier la dérivabilité de f en a.

Proposition 1

Soit f:I—Retacl.
Si f est dérivable en a, alors f est continue en a.

Preuve.



Remarque : La réciproque est fausse :
o frix—|x|,
y

xsin< sSix#0
sinon.

<x

2

X

1 .
> Exemple 2: Soitf:x»—»{ 0 cosy slx#0

. f est-elle dérivable en 07
sinon.

1.2 Dérivabilité a gauche, a droite

—‘ Définition 3

Soit f: I — R une fonctionetac I.

fx) - fla)

On dit que f est dérivable a droite (resp. a gauche) en a ssi x — admet une limite finie a droite (resp.

x—a
a gauche) en a. Cette limite, si elle existe, est alors notée fl;(a) (resp. fé,(a)) et est appelée dérivée a droite (resp.
a gauche) de la fonction fena:

fx)-fla
—a

/ T / T f(x) _f(a)
fila) = xllnal+ B et fg(a) = xlim_ —_,

a X—a




—4 Proposition 2

Soit f: I — R une fonction et a € I qui n’est pas une extrémité. On a I'équivalence :

f est dérivable a gauche en a
f estdérivableena <<= f est dérivable a droite en a
fela) = fi(a@

Dans ce cas,ona: f'(a) = fé(a) = f;(a).

0 six<0

> Exemple 3: Posons:f:x»—»{ 2

. Etudions la dérivabilité de f en 0.
x* sinon.

1.3 Fonction dérivée

—4 Définition 4
¢ Ondit que f: I — R est dérivable sur I ssi f est dérivable en tout point de I. On définit alors la fonction dérivée
!
4o £T . ffio I — R
de f notée f', par: x - f.
e On dit que f : I — R est dérivable a droite (resp. a gauche) sur I ssi f est dérivable a droite (resp. a gauche)
en tout point de I. On définit alors la fonction dérivée a droite (resp. a gauche) de f notée f;, (resp. fé), par :
fy(resp. f): I — R
x —  fy(x)(resp. fg(x).

—4 Proposition 3

Si f: I — R est dérivable sur I, elle est continue sur /.

1.4 Opérations sur les dérivées

—4 Proposition 4

Soit f et g: I — R deux fonctions dérivablesen a€ I :
e Pourtout A, ueR, (Af +pug) est dérivableen aetona:

Af +pg) (@ =Af"(a)+ pg'(a).

» fgestdérivableenaetona:
(fg)(a) = f'(a)g(a) + f(a)g'(a).

o Side plus, g(a) #0, g est dérivableen aetona:

Y . flaga-fag'(a
=| (@) = 7 .
4 gla)

Preuve.
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f:

R R
> Exemple 4: Soit - x . Etudier la dérivabilité de f et calculer sa dérivée.

Proposition 5

Soient I et J deux intervalles non vides et non réduits a un point. Soient f: I — Ret g: J — R avec f(I) c J. Soit
ac€l.Si f estdérivable en a € I et si g est dérivable en f(a), alors go f est dérivableen aetona:

(go (@ =f'(a)x g (f(a).

Preuve.



—4 Théoréme 1

etdans ce cas:

Soienta € I, f: I — J continue, bijective et dérivable en a.

f1:J — Iestdérivable en b = f(a) si, et seulement sif’(a) #0

1

1

F Y =

@ 7 w)

Preuve.

|

Remarque : Lannulation de la dérivée de f correspond a I'existence d'une tangente horizontale. Pour f~!, cette tangente

devient verticale, c’est pourquoi il y a un probleme de non dérivabilité.



II Propriétés des fonctions dérivables

2.1 Extremum local et point critique

—4 Définition 5

Soient f: I — Rune fonctionetae I.

¢ On dit que f admet une maximum local en g, si et seulement si il existe un réel r > 0 tel que la fonction
flinja=r,a+r[ admette un maximum en q, i.e::

Vxelnla-r,a+r, f(x)< f(a)

e On dit que f admet une minimum local en q, si et seulement si il existe un réel r > 0 tel que la fonction
flinla—r,a+r[ admette un minimum en a, i.e :

Vxelnla—r,a+rl, f(a) < f(x)

e On dit que f admet un extremum local en g, si et seulement si f admet un maximum local en a ou un
minimum local en a.

—4 Définition 6

Soient f: I — Rune fonctionetae I.
On dit que a est un point critique de f ssi f est dérivableen a et :

f'(@)=0.

—4 Théoréme 2

Soit f une fonction définie sur un intervalle I de R et a valeurs dans R. Si :
e ac ] et an’estpas une extrémité de I,
« lafonction f est dérivable en a,

« lafonction f admet un extremum local en a,
alors a est un point critique de f c’est-a-dire : f'(a) =0.

Remarque:
o Lerésultat est faux si a est une extrémité de I. Par exemple: f:[0,1] =R, x — xeta=1.
« laréciproque est fausse. Par exemple : x — x> et a = 0.



Preuve.

|

> Exemple 5: Soit f : [a, b] — R une fonction dérivable. On suppose que f'(a) <0 et f'(b) > 0. Montrer qu’il existe ¢ €]a, b|
tel que f’(c) = 0.
Ce résultat est le théoreme de Darboux.

2.2 Théoreme de Rolle
Théoréme 3 : Théoréme de Rolle }

Soient a et b deux réels tels que a < b. Soit f continue sur [a, b], dérivable sur ]a, b telle que f(a) = f(b). Alors il
existe ¢ €]a, b[ tel que f'(c) = 0.

Remarque : Le théoréme de Rolle est un théoreme d’existence mais pas d'unicité.




Preuve.

> Exemple 6: Soit f:[-1,1] — R de classe C' telle que f(—1) = £(0) = f(1) = 0. On pose :

g: [-1,1] — R
X - 2x4+x+f(x).

Montrer qu'’il existe c €] —1,1[ tel que g’(c) = 0.

2.3 Accroissement finis

Théoréme 4 : Egalité des accroissements finis }

Soient a et b deux réels avec a < b. Soit f continue sur [a, b] et dérivable sur ]a, b|, alors il existe ¢ €]a, b| tel que :

f) -f@ _

— fi(e-




Preuve.

> Exemple 7: Soit f: R* — R dérivable telle que f(0) = 0. Montrer que :

VxeR"™, AceR™™, f(2x) =2xf'(c).

Proposition 6 : Inégalité des accroissements finis }

Soit f dérivable sur I. Supposons qu'il existe m, M € R tels que pour tout x € I, m < f'(x) < M, alors :

Vx,yelL x>y, mx—y) < f(x)- f(y) < M(x—y).

Remarque : Si f est C! sur [a, b], alors comme f est continue sur un segment, f’ est bornée. On peut donc appliquer I'in-
égalité des accroissements finis.

Preuve.



—4 Définition 7

Soit f: I — R, soit K = 0. On dit que f est K-lipschitzienne ssi :

Vx,yeLI|f(x)— fWI<Klx—yl.

—{ Corollaire 1 : Inégalité des accroissements finis }

Soit f dérivable sur I. Supposons qu’il existe M € R tels que pour tout x € I, |f'(x)| < M, alors f est M-

lipschitzienne :
Vx,ye LIf(x)- f()l<Mlx-yl

Preuve.

> Exemple 8: Montrer que:
Vx,y €R, |Arctan (x) — Arctan (y)| =[x — y|.

> Exemple 9: Montrer que:

1
VI’ZEN*,VI’Z-F —\/ESTS\/E—VVL—L
n

Méthode 1
Soit f: I — I dérivable sur I. Supposons qu'il existe k € [0, 1] tel que :

vxel|f (x)| <k.

Supposons que ! € I soit un point fixe de f, c’est-a-dire que f(I) = L.
On considere la suite définie par :
upeletvVneN, uyyr = f(uy).

Alors, en appliquant I'inégalité des accroissements finis entre u, et [, pour ne N, ona:
VReEN, lupr — U =1f(un) — fFDI < klu, —1I.

Ainsi, par récurrence, on a:
vneN, | u, I < k™ug-1|.

Comme |k| <1,onalimk”™ =0donc:
limu, =1.

Remarque:
o Cette méthode permet d’étudier la convergence sans étudier la monotonie.
o Lhypotheése Vxe I, |f'(x)| < k avec k < 1 n'est pas équivalente a Vx € I, | f'(x)| < 1.

10



e u, estune valeur approchéede l a k".(b—a) si I = [a, D).
e (uy) tend vers [ a la méme vitesse que la suite géométrique (k).

o> Exemple 10: On définit la suite (1) par: ug=1etVneN, u,,1 = e~ “2. Montrer que :
1
VneN, u,el[-,1].
e
Montrer que (u,) converge. On note [ sa limite. Comment obtenir une valeur approchée de [ 2 1073 pres?

2.4 Fonctions monotones

—‘ Proposition 7

Soient a, b € R tels que a < b.
Soit f une fonction continue sur [a, b] et dérivable sur ]a, bI.

[ est constante sur [a, b] si et seulement si Vx €]a, b[, f'(x) =0.
[ est croissante sur [a, b] si et seulement Vx €]a, b|, f'(x) = 0.
 f estdécroissante sur [a, b] si et seulement Vx €]a, b, f'(x) <0.

Remarque : Lhypothése d’intervalle est fondamentale, par exemple x — % a une dérivée négative sur R* mais n'est pas

décroissante sur R* et x — Arctan x + Arctan % a une dérivée nulle sur R* mais n’est pas constante sur R*.

Preuve.

—4 Théoréme 5

Soient a, b € R tels que a < b.

Soit f une fonction continue sur [a, b] et dérivable sur ]a, b[.

Supposons f monotone sur [a, b].

Alors f est strictement monotone sur [a, b] ssi {x €]a, b[, f’(x) = 0} ne contient pas d’intervalle de la forme ]a, B[
avec a < 3, a, B €la, bl.

11



Preuve.

Corollaire 2

Soient a, b € R tels que a < b. Soit f une fonction continue sur [a, b] et dérivable sur ]a, b|.
Si f’ est strictement positive (resp. strictement négative), sauf éventuellement en un nombre fini de points de
la, bl ou f' s’annule, alors f est strictement croissante (resp. strictement décroissante).

Remarque : Le signe de la dérivée en un point ne donne pas d’'information sur la monotonie au voisinage de ce point. Par
f: R - R
exemple, considérons la fonction définie par : - { X+ 2x? sin% six#0
0 six=0.
Soit x € R*, comme % =1+ 2xsin}—lc, f est dérivable en O et f'(0) =1>0.
De plus, soit x #0, f'(x) =1+4x sin% - 2cos% donc f'(x) estla somme d'une quantité qui tend vers 1 et d’'une quantité qui

oscille entre -2 et 2 au voisinage de 0 donc qui change de signe au voisinage de 0.

2.5 Théoreme de lalimite de la dérivée

Théoreme 6 : Théoreme de la limite de la dérivée }

Soit a € I. Soit f une fonction continue sur I et f dérivable sur I\{a}. Si )ICIII}l f'(x) =1l avec | € RU {#o0} alors
lim —f(x) —f@ =1.

X—a XxX—da

12



Preuve.

Corollaire 3

Soit a € I. Soit f une fonction continue sur I et f dérivable sur I\{a}. Si )lcln}l f'(x) =l avec I € R alors f est

dérivable en a et f'(a) = 1.

Remarque:
x2 sin% six#0

e Laréciproque est fausse: f: x— { 0 sinon. f est dérivable en 0 et f' n’a pas de limite en 0.

o Le corollaire implique que f’ est continue en a.

f: RY - R
{ Vxe U six>0 .Montrer que f est dérivable sur R*
0 sinon

> Exemple 11: Soit

—

> Exemple 12: Résoudre I'équation différentielle sur R :

xy' =2y=(x-Dx+1)>3

III Fonctions de classe C*

3.1 Définition

—4 Définition 8

Soit f: I —R.
e Onpose fO = f.
« Soit k € N. On suppose que la fonction f® : I — R existe et qu’elle est dérivable sur I. On note alors f*+1)
la dérivée de f®, c’est adire : f&+D = (FR)y,
Si pour 7 € N, la fonction f" existe, on dit alors que f est n fois dérivable sur I, et on appelle f la dérivée
n-iéme de f sur I.
On dit que f est indéfiniment dérivable sur I ssi pour tout n €N, f est n-fois dérivable sur I.

13



—4 Définition 9

Soit f: I — R une fonction.
e Pour n € N*, on dit que f: I — R est de classe C" sur I ssi f est n-fois dérivable sur I, et f est continue
sur I.
On note C"(I) ou C"(I,R) 'ensemble des fonctions de I dans R de classe C".

e Ondit que f:I— Restde classe C* sur I ssi pour tout n €N, f est de classe C" sur I.
On note C*°(I) ou C*°(I,R) I'’ensemble des fonctions de I dans R de classe C*°.

3.2 Opérations sur les fonctions C*

—4 Proposition 8

Soient ke N, f,geCk(I), soient A,y € R.
Alors Af +ug e C*(D) et Af +ug)® = Af 0 4 ug®,

—{ Proposition 9 : Formule de Leibniz }

Soient neN, f,geC"(I). Alors fgeC"(I) etona

k=0

w _ N (1) po) by

Preuve.

14



> Exemple 13: Déterminer, pour tout n € N, la dérivée n'®™ de :

fix—e*(x+2).

Proposition 10

Soient k € N et I et J deux intervalles non vides et non réduits a un point. Soient f € C k (Netge ck (J) telles que
f() < J.Alors (go f) e Ck(I).

Preuve. e Pour k=0, soient f € o) et ge CO()) telles que f() c J. Alors, par continuité de la composée d’applications continues,

ona:(gof)eCo.

» Soit k € N, supposons le résultat vrai pour les fonctions de classe C k,
Soient f € Ck*1(I) et g e Ck*1()) telles que f(I) < J.
Alors f et g sont dérivables, donc go f est dérivable et:(go f) = f'.g'o f.
Or g’ € Ck(J) et f e CK(I) donc, par hypothese de récurrence : (g'o f) € CK(I).
De plus, f € ¢*(1), donc par produit :

(gof) =g ofeckw.

Ainsi: (go f) e Ck*1(I).

¢ D’ou la preuve par récurrence.

Proposition 11

f

Soit k € N. Soient f,g € ckw. si g ne s’annule pas sur [, alors = € ck(n.
g

1

Preuve. e Posons h:R* — R, x+— <,

la proposition précédente :

ona: heCkR*).De plus, g€ Ck(1 et, comme g ne n‘annule pas sur I, g(I) «R*, donc, d’apreés
hog Leck
og=— .
§

o fe ck et é e k(1) donc, par produit :

! eckw.
g

o> Exemple 14: Déterminer, pour tout n € N, la dérivée piéme de :

1
X —.
f 1-x

Proposition 12

Soit k € N*. Soit f : I — J une bijection de classe C*. Alors f~! est de classe C¥ sur J si et seulement si f’ ne
s’annule pas sur I.

Remarque: Il n'y a pas besoin d’hypothése de non annulation de f”, f',....

Preuve. e Pour k =1, soit f: I — J est bijective, de classe C! sur I.
On sait que f~! est dérivable sur J ssi f’ ne s’annule pas sur I. De plus, dans ce cas :

1
Jrey v

Or f' est continue et ne s'annule pas sur I, et f~! continue (car dérivable), donc (f~1)’ est continue comme quotient et composée
de fonctions qui le sont, le dénominateur ne s'annulant pas. Ainsi f~! est Clsur J.
« Soit k € N*, supposons le résultat vrai pour les fonctions C k.
Soit f: I — J est bijective, de classe cklgur .
Alors f~1 est de classe Ck sur Jssi /' ne s'annule pas sur I. De plus, dans ce cas :

Y

-1y _ )
) f/of—l

Or f’ est de classe C¥ sur I et ne s’'annule passur [, et f_1 est de classe C¥ sur J, donc (f_l)’ est de classe C¥ sur J comme quotient
et composée de fonctions qui le sont, le dénominateur ne s'annulant pas. Ainsi f~! est C k+lsur g,
¢ D’ou la preuve par récurrence.

15



IV Fonctions convexes

4.1 Généralités

Définition 10

Soit f: I — R. On dit que f est convexe ssi :

Vx,ye LVA€[0,1], f(1-Nx+Ay) <A -V f(x)+Af(p).

Remarque:Si x < y,ona:{(1-A)x+ Ay, 1 €10,1]} = [x, y] (paramétrage d'un segment).
En effet :

e s0it 1€ [0,1], 1 -A)x+Ay=x+Ay—x)€[x,x+(y—-x)]=[x,¥],

e soitze[x,y],so0it LeR,ona:
z=1-ANx+Alye A= “ x'
y-x

Posons A = ﬁ Onaz=(1-A)x+Ayetcomme z€ [x,y], A €[0,1] donc A convient.

VIO 1¢)) —

AA=-VDx+AY) F-~-----

!
|
|
|
|
|
|
|
|
|
!
!
|
|
|
1

\</—A)x+/1y y

> Exemple 15: Soit f :R — R, x — |x|. Montrer que f est convexe.

Proposition 13

Soit f: I — R convexe.
Pour tout a € I la fonction x — W est croissante sur I\ {a}.

Preuve.

16



—‘ Proposition 14

Soit f: I — R une fonction convexe.
Pour tous x, y € I, la courbe représentative de f sur [x, y] est en-dessous de sa sécante sur [x, y], c’est-a-dire :
X) —
Vx,yel,x<y VYtelxyl, f(t) = M(t—x) + f(x).
xX=y
Pour tous x, y € I, la courbe représentative de f en dehors de [x, y] est au-dessus de sa sécante en dehors de
[x, y], C'est-a-dire :

Vx,ye Lx<y Vte[x,yl, f(t) =

TOTD (4 o).
x-y

Preuve.

> Exemple 16: Toute fonction convexe sur un intervalle ouvert est continue.

17



4.2 Convexité et fonctions dérivables

—‘ Proposition 15

Soit f: I — R dérivable.
Les propositions suivantes sont équivalentes :

(i) f estconvexe,
@) f " est croissante sur I,
(iii) la courbe représentative de f est située au-dessus de ses tangentes, c’est-a-dire :

vx,acl, f(x)= f(a)(x—a)+ f(a).

Remarque : Une fonction convexe n’est pas toujours dérivable. Par exemple : f : x — | x| est convexe mais non dérivable en 0.

Preuve.

Corollaire 4

Soit f: I — R deux fois dérivable.
f est convexe ssi /=0 sur I.

o> Exemple 17:
1. Soit f:R** - R, x— —Inx. f est convexe.
2. Montrer que : Yx €]0,4+oo[, In(x) = x—-1

> Exemple 18:
1. Lafonction —sin est convexe sur [0, 7 |.

2. Montrer que: Vx€ [0,5], 27’“ <sinx < x.

18



V Fonctions complexes

5.1 Généralités

—‘ Définition 11

e Onditque f: I — Cestdérivable en a € I ssi son taux d’accroissement en a :

I\{a} — C
fx)-fla)

X—a

X

admet une limite (finie) quand x tend vers a. On appelle alors dérivée de f en a et on note f’(a) cette
limite.

e Ondit que f est dérivable sur I ssi f est dérivable en tout point de I.

—4 Proposition 16

Soit f: I — Cetac I. f estdérivable en a si et seulement si Re (f) et Im (f) sont dérivables en a, et on a alors :

f'(@ =Re(f) (a) +ilm () (a).

Remarque:

e Les résultats d’opérations sur les dérivées, dont la formule de Leibnitz, restent valables pour les fonctions a valeurs
complexes.

o Les résultats sur la monotonie et sur les extremums n’ont plus de sens pour les fonctions a valeurs complexes.

5.2 Inégalité des accroissements finis

Proposition 17 : Inégalité des accroissements finis }

Soit f : I — C dérivable sur I. Supposons qu'il existe M € R tels que pour tout x € I, | f'(x)| < M, alors :

Vx,ye LIf(x) - f(y)| < Mlx-yl

Remarque : Le théoréme de Rolle est faux pour les fonctions a valeurs complexes, par exemple : f : [0,27] — C, x— e'*. Il en
est de méme pour 'égalité des accroissements finis. Cependant, I'inégalité des accroissements finis est vraie.

Preuve.
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