
Chapitre 14 : Dérivabilité

Dans tout le chapitre I désignera un intervalle de R non vide et non réduit à un point.

I Nombre dérivé, fonction dérivée

1.1 Dérivabilité en un point, nombre dérivé

Soit f : I →R une fonction. Soient x, a ∈ I avec x ̸= a. Le taux d’accroissement entre x et a est le rapport :

f (x)− f (a)

x −a

Définition 1

Remarque : Le taux d’accroissement est la pente de la sécante entre les points d’abscisses x et a.

Soit f : I →R une fonction. On dit que f est dérivable en a si et seulement si son taux d’accroissement en a :

I \ {a} → R

x 7→ f (x)− f (a)

x −a

admet une limite finie en a. Cette limite, lorsqu’elle existe, est appelé nombre dérivée de f en a. Il est noté f ′(a) :

f ′(a) = lim
x→a

f (x)− f (a)

x −a
.

Définition 2

Remarque :

• Le nombre dérivée est la pente de la tangente au point d’abscisse a.

• L’équation de la tangente au point d’abscisse a est :

y = f ′(a)(x −a)+ f (a).

• Par composition des limites, on a :

f ′(a) = lim
h→0

f (a +h)− f (a)

h
.

Ainsi :
f (a +h) = f (a)+ f ′(a)h +hε(h),

avec : lim
h→0

ε(h) = 0.

Il s’agit du développement limité de f à l’ordre 1 en a.

➪ Exemple 1 : Soient n ∈N∗ et a ∈R, soit f : x 7→ xn . Etudier la dérivabilité de f en a.

Soit f : I →R et a ∈ I .
Si f est dérivable en a, alors f est continue en a.

Proposition 1

Preuve.

Remarque : La réciproque est fausse :
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• f : x 7→ |x|,

0 1

1

x

y

• f : x 7→p
x,

0 1

1

x

y

• f : x 7→
{

x sin 1
x si x ̸= 0

0 sinon.
,

x

y

➪ Exemple 2 : Soit f : x 7→
{

x2 cos 1
x si x ̸= 0

0 sinon.
f est-elle dérivable en 0 ?

1.2 Dérivabilité à gauche, à droite

Soit f : I →R une fonction et a ∈ I .

On dit que f est dérivable à droite (resp. à gauche) en a ssi x 7→ f (x)− f (a)

x −a
admet une limite finie à droite (resp.

à gauche) en a. Cette limite, si elle existe, est alors notée f ′
d (a) (resp. f ′

g (a)) et est appelée dérivée à droite (resp.
à gauche) de la fonction f en a :

f ′
d (a) = lim

x→a+
f (x)− f (a)

x −a
et f ′

g (a) = lim
x→a−

f (x)− f (a)

x −a
.

Définition 3
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Soit f : I →R une fonction et a ∈ I qui n’est pas une extrémité. On a l’équivalence :

f est dérivable en a ⇐⇒


f est dérivable à gauche en a
f est dérivable à droite en a
f ′

g (a) = f ′
d (a)

Dans ce cas, on a : f ′(a) = f ′
g (a) = f ′

d (a).

Proposition 2

➪ Exemple 3 : Posons : f : x 7→
{

0 si x ≤ 0
x2 sinon.

Etudions la dérivabilité de f en 0.

1.3 Fonction dérivée

• On dit que f : I →R est dérivable sur I ssi f est dérivable en tout point de I . On définit alors la fonction dérivée

de f notée f ′, par :
f ′ : I → R

x 7→ f ′(x).
• On dit que f : I → R est dérivable à droite (resp. à gauche) sur I ssi f est dérivable à droite (resp. à gauche)
en tout point de I . On définit alors la fonction dérivée à droite (resp. à gauche) de f notée f ′

d (resp. f ′
g ), par :

f ′
d ( resp. f ′

g ) : I → R

x 7→ f ′
d (x)( resp. f ′

g (x).

Définition 4

Si f : I →R est dérivable sur I , elle est continue sur I .

Proposition 3

1.4 Opérations sur les dérivées

Soit f et g : I →R deux fonctions dérivables en a ∈ I :

• Pour tout λ,µ ∈R, (λ f +µg ) est dérivable en a et on a :

(λ f +µg )′(a) =λ f ′(a)+µg ′(a).

• f g est dérivable en a et on a :
( f g )′(a) = f ′(a)g (a)+ f (a)g ′(a).

• Si de plus, g (a) ̸= 0,
f

g
est dérivable en a et on a :

(
f

g

)′
(a) = f ′(a)g (a)− f (a)g ′(a)

g (a)2 .

Proposition 4

Preuve.

➪ Exemple 4 : Soit
f : R → R

x 7→ x
1+|x|

. Etudier la dérivabilité de f et calculer sa dérivée.

Soient I et J deux intervalles non vides et non réduits à un point. Soient f : I → R et g : J → R avec f (I ) ⊂ J . Soit
a ∈ I . Si f est dérivable en a ∈ I et si g est dérivable en f (a), alors g ◦ f est dérivable en a et on a :

(g ◦ f )′(a) = f ′(a)× g ′( f (a)).

Proposition 5

Preuve.
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Soient a ∈ I , f : I → J continue, bijective et dérivable en a.

f −1 : J → I est dérivable en b = f (a) si, et seulement si f ′(a) ̸= 0

et dans ce cas : (
f −1)′ (b) = 1

f ′(a)
= 1

f ′ ( f −1(b)
)

Théorème 1

Preuve.

Remarque : L’annulation de la dérivée de f correspond à l’existence d’une tangente horizontale. Pour f −1, cette tangente
devient verticale, c’est pourquoi il y a un problème de non dérivabilité.

x

y

×

×

II Propriétés des fonctions dérivables

2.1 Extremum local et point critique

Soient f : I →R une fonction et a ∈ I .

• On dit que f admet une maximum local en a, si et seulement si il existe un réel r > 0 tel que la fonction
f |I∩]a−r,a+r [ admette un maximum en a, i.e :

∀x ∈ I∩]a − r, a + r [, f (x) ≤ f (a)

• On dit que f admet une minimum local en a, si et seulement si il existe un réel r > 0 tel que la fonction
f |I∩]a−r,a+r [ admette un minimum en a, i.e :

∀x ∈ I∩]a − r, a + r [, f (a) ≤ f (x)

• On dit que f admet un extremum local en a, si et seulement si f admet un maximum local en a ou un
minimum local en a.

Définition 5

Soient f : I →R une fonction et a ∈ I .
On dit que a est un point critique de f ssi f est dérivable en a et :

f ′(a) = 0.

Définition 6
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Soit f une fonction définie sur un intervalle I de R et à valeurs dans R. Si :

• a ∈ I et a n’est pas une extrémité de I ,

• la fonction f est dérivable en a,

• la fonction f admet un extremum local en a,
alors a est un point critique de f c’est-à-dire : f ′(a) = 0.

Théorème 2

Remarque :

• Le résultat est faux si a est une extrémité de I . Par exemple : f : [0,1] →R, x 7→ x et a = 1.

• la réciproque est fausse. Par exemple : x 7→ x3 et a = 0.

Preuve.

➪ Exemple 5 : Soit f : [a,b] →R une fonction dérivable. On suppose que f ′(a) < 0 et f ′(b) > 0. Montrer qu’il existe c ∈]a,b[
tel que f ′(c) = 0.
Ce résultat est le théorème de Darboux.

2.2 Théorème de Rolle

Soient a et b deux réels tels que a < b. Soit f continue sur [a,b], dérivable sur ]a,b[ telle que f (a) = f (b). Alors il
existe c ∈]a,b[ tel que f ′(c) = 0.

Théorème 3 : Théorème de Rolle

Remarque : Le théorème de Rolle est un théorème d’existence mais pas d’unicité.

0 x

y

c1c2a b

Preuve.

➪ Exemple 6 : Soit f : [−1,1] →R de classe C1 telle que f (−1) = f (0) = f (1) = 0. On pose :

g : [−1,1] → R

x 7→ 2x4 +x + f (x).

Montrer qu’il existe c ∈]−1,1[ tel que g ′(c) = 0.

2.3 Accroissement finis

Soient a et b deux réels avec a < b. Soit f continue sur [a,b] et dérivable sur ]a,b[, alors il existe c ∈]a,b[ tel que :

f (b)− f (a)

b −a
= f ′(c).

Théorème 4 : Egalité des accroissements finis
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x
ca b

Preuve.

➪ Exemple 7 : Soit f :R+ →R dérivable telle que f (0) = 0. Montrer que :

∀x ∈R+∗, ∃c ∈R+∗, f (2x) = 2x f ′(c).

Soit f dérivable sur I . Supposons qu’il existe m, M ∈R tels que pour tout x ∈ I , m ≤ f ′(x) ≤ M , alors :

∀x, y ∈ I , x > y, m(x − y) ≤ f (x)− f (y) ≤ M(x − y).

Proposition 6 : Inégalité des accroissements finis

Remarque : Si f est C1 sur [a,b], alors comme f ′ est continue sur un segment, f ′ est bornée. On peut donc appliquer l’in-
égalité des accroissements finis.

Preuve.

Soit f : I →R, soit K ≥ 0. On dit que f est K -lipschitzienne ssi :

∀x, y ∈ I , | f (x)− f (y)| ≤ K |x − y |.

Définition 7

Soit f dérivable sur I . Supposons qu’il existe M ∈ R tels que pour tout x ∈ I , | f ′(x)| ≤ M , alors f est M-
lipschitzienne :

∀x, y ∈ I , | f (x)− f (y)| ≤ M |x − y |.

Corollaire 1 : Inégalité des accroissements finis

Preuve.

➪ Exemple 8 : Montrer que :
∀x, y ∈R, |Arctan(x)−Arctan(y)| ≤ |x − y |.

➪ Exemple 9 : Montrer que :

∀n ∈N∗,
p

n +1−p
n ≤ 1

2
p

n
≤p

n −p
n −1.

Soit f : I → I dérivable sur I . Supposons qu’il existe k ∈ [0,1[ tel que :

∀x ∈ I , | f ′(x)| ≤ k.

Supposons que l ∈ I soit un point fixe de f , c’est-à-dire que f (l ) = l .
On considère la suite définie par :

u0 ∈ I et ∀n ∈N, un+1 = f (un).

Alors, en appliquant l’inégalité des accroissements finis entre un et l , pour n ∈N, on a :

∀n ∈N, |un+1 − l | = | f (un)− f (l )| ≤ k|un − l |.

Ainsi, par récurrence, on a :
∀n ∈N, |un − l | ≤ kn |u0 − l |.

Comme |k| < 1, on a limkn = 0 donc :
limun = l .

Méthode 1
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Remarque :

• Cette méthode permet d’étudier la convergence sans étudier la monotonie.

• L’hypothèse ∀x ∈ I , | f ′(x)| ≤ k avec k < 1 n’est pas équivalente à ∀x ∈ I , | f ′(x)| < 1.

• un est une valeur approchée de l à kn .(b −a) si I = [a,b].

• (un) tend vers l à la même vitesse que la suite géométrique (kn).

➪ Exemple 10 : On définit la suite (un) par : u0 = 1 et ∀n ∈N, un+1 = e−un . Montrer que :

∀n ∈N, un ∈ [
1

e
,1].

Montrer que (un) converge. On note l sa limite. Comment obtenir une valeur approchée de l à 10−3 près?

2.4 Fonctions monotones

Soient a,b ∈R tels que a < b.
Soit f une fonction continue sur [a,b] et dérivable sur ]a,b[.

• f est constante sur [a,b] si et seulement si ∀x ∈]a,b[, f ′(x) = 0.

• f est croissante sur [a,b] si et seulement ∀x ∈]a,b[, f ′(x) ≥ 0.

• f est décroissante sur [a,b] si et seulement ∀x ∈]a,b[, f ′(x) ≤ 0.

Proposition 7

Remarque : L’hypothèse d’intervalle est fondamentale, par exemple x 7→ 1
x a une dérivée négative sur R∗ mais n’est pas

décroissante sur R∗ et x 7→ Arctan x +Arctan 1
x a une dérivée nulle sur R∗ mais n’est pas constante sur R∗.

Preuve.

Soient a,b ∈R tels que a < b.
Soit f une fonction continue sur [a,b] et dérivable sur ]a,b[.
Supposons f monotone sur [a,b].
Alors f est strictement monotone sur [a,b] ssi {x ∈]a,b[, f ′(x) = 0} ne contient pas d’intervalle de la forme ]α,β[
avec α<β, α,β ∈]a,b[.

Théorème 5

Preuve.

Soient a,b ∈R tels que a < b. Soit f une fonction continue sur [a,b] et dérivable sur ]a,b[.
Si f ′ est strictement positive (resp. strictement négative), sauf éventuellement en un nombre fini de points de
]a,b[ où f ′ s’annule, alors f est strictement croissante (resp. strictement décroissante).

Corollaire 2

Remarque : Le signe de la dérivée en un point ne donne pas d’information sur la monotonie au voisinage de ce point. Par

exemple, considérons la fonction définie par :
f : R → R

x 7→
{

x +2x2 sin 1
x si x ̸= 0

0 si x = 0.

Soit x ∈R∗, comme f (x)− f (0)
x−0 = 1+2x sin 1

x , f est dérivable en 0 et f ′(0) = 1 > 0.

De plus, soit x ̸= 0, f ′(x) = 1+4x sin 1
x −2cos 1

x donc f ′(x) est la somme d’une quantité qui tend vers 1 et d’une quantité qui
oscille entre -2 et 2 au voisinage de 0 donc qui change de signe au voisinage de 0.

2.5 Théorème de la limite de la dérivée

Soit a ∈ I . Soit f une fonction continue sur I et f dérivable sur I \{a}. Si lim
x→a

f ′(x) = l avec l ∈ R∪ {±∞} alors

lim
x→a

f (x)− f (a)

x −a
= l .

Théorème 6 : Théorème de la limite de la dérivée

Preuve.
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Soit a ∈ I . Soit f une fonction continue sur I et f dérivable sur I \{a}. Si lim
x→a

f ′(x) = l avec l ∈ R alors f est

dérivable en a et f ′(a) = l .

Corollaire 3

Remarque :

• La réciproque est fausse : f : x 7→
{

x2 sin 1
x si x ̸= 0

0 sinon.
, f est dérivable en 0 et f ′ n’a pas de limite en 0.

• Le corollaire implique que f ′ est continue en a.

➪ Exemple 11 : Soit
f : R+ → R

x 7→
{ p

xe−1/x si x > 0
0 sinon

. Montrer que f est dérivable sur R+

➪ Exemple 12 : Résoudre l’équation différentielle sur R :

x y ′−2y = (x −1)(x +1)3.

III Fonctions de classe Ck

3.1 Définition

Soit f : I →R.

• On pose f (0) = f .

• Soit k ∈N. On suppose que la fonction f (k) : I →R existe et qu’elle est dérivable sur I . On note alors f (k+1)

la dérivée de f (k), c’est à dire : f (k+1) = ( f (k))′.
Si pour n ∈ N, la fonction f (n) existe, on dit alors que f est n fois dérivable sur I , et on appelle f (n) la dérivée
n-ième de f sur I .
On dit que f est indéfiniment dérivable sur I ssi pour tout n ∈N, f est n-fois dérivable sur I .

Définition 8

Soit f : I →R une fonction.

• Pour n ∈N∗, on dit que f : I → R est de classe Cn sur I ssi f est n-fois dérivable sur I , et f (n) est continue
sur I .
On note Cn(I ) ou Cn(I ,R) l’ensemble des fonctions de I dans R de classe Cn .

• On dit que f : I →R est de classe C∞ sur I ssi pour tout n ∈N, f est de classe Cn sur I .
On note C∞(I ) ou C∞(I ,R) l’ensemble des fonctions de I dans R de classe C∞.

Définition 9

3.2 Opérations sur les fonctions Ck

Soient k ∈N, f , g ∈ Ck (I ), soient λ,µ ∈R.
Alors λ f +µg ∈ Ck (I ) et (λ f +µg )(k) =λ f (k) +µg (k).

Proposition 8

Soient n ∈N, f , g ∈ Cn(I ). Alors f g ∈ Cn(I ) et on a

( f g )(n) =
n∑

k=0

(
n

k

)
f (k)g (n−k).

Proposition 9 : Formule de Leibniz

Preuve.

➪ Exemple 13 : Déterminer, pour tout n ∈N, la dérivée nième de :

f : x 7→ e2x (x +2).
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Soient k ∈N et I et J deux intervalles non vides et non réduits à un point. Soient f ∈ Ck (I ) et g ∈ Ck (J ) telles que
f (I ) ⊂ J . Alors (g ◦ f ) ∈ Ck (I ).

Proposition 10

Preuve. • Pour k = 0, soient f ∈ C0(I ) et g ∈ C0(J ) telles que f (I ) ⊂ J . Alors, par continuité de la composée d’applications continues,
on a : (g ◦ f ) ∈ C0(I ).

• Soit k ∈N, supposons le résultat vrai pour les fonctions de classe Ck .
Soient f ∈ Ck+1(I ) et g ∈ Ck+1(J ) telles que f (I ) ⊂ J .
Alors f et g sont dérivables, donc g ◦ f est dérivable et :(g ◦ f )′ = f ′.g ′ ◦ f .
Or g ′ ∈ Ck (J ) et f ∈ Ck (I ) donc, par hypothèse de récurrence : (g ′ ◦ f ) ∈ Ck (I ).
De plus, f ′ ∈ Ck (I ), donc par produit :

(g ◦ f )′ = f ′.g ′ ◦ f ∈ Ck (I ).

Ainsi : (g ◦ f ) ∈ Ck+1(I ).
• D’où la preuve par récurrence.

Soit k ∈N. Soient f , g ∈ Ck (I ). Si g ne s’annule pas sur I , alors
f

g
∈ Ck (I ).

Proposition 11

Preuve. • Posons h :R∗ →R, x 7→ 1
x , on a : h ∈ Ck (R∗). De plus, g ∈ Ck (I ) et, comme g ne n’annule pas sur I , g (I ) ⊂R∗, donc, d’après

la proposition précédente :

h ◦ g = 1

g
∈ Ck (I ).

• f ∈ Ck (I ) et 1
g ∈ Ck (I ) donc, par produit :

f

g
∈ Ck (I ).

➪ Exemple 14 : Déterminer, pour tout n ∈N, la dérivée nième de :

f : x 7→ 1

1−x
.

Soit k ∈ N∗. Soit f : I → J une bijection de classe Ck . Alors f −1 est de classe Ck sur J si et seulement si f ′ ne
s’annule pas sur I .

Proposition 12

Remarque : Il n’y a pas besoin d’hypothèse de non annulation de f ′′, f ′′′, . . . .

Preuve. • Pour k = 1, soit f : I → J est bijective, de classe C1 sur I .
On sait que f −1 est dérivable sur J ssi f ′ ne s’annule pas sur I . De plus, dans ce cas :

( f −1)′ = 1

f ′ ◦ f −1
.

Or f ′ est continue et ne s’annule pas sur I , et f −1 continue (car dérivable), donc ( f −1)′ est continue comme quotient et composée
de fonctions qui le sont, le dénominateur ne s’annulant pas. Ainsi f −1 est C1sur J .

• Soit k ∈N∗, supposons le résultat vrai pour les fonctions Ck .
Soit f : I → J est bijective, de classe Ck+1 sur I .
Alors f −1 est de classe Ck sur J ssi f ′ ne s’annule pas sur I . De plus, dans ce cas :

( f −1)′ = 1

f ′ ◦ f −1
.

Or f ′ est de classe Ck sur I et ne s’annule pas sur I , et f −1 est de classe Ck sur J , donc ( f −1)′ est de classe Ck sur J comme quotient
et composée de fonctions qui le sont, le dénominateur ne s’annulant pas. Ainsi f −1 est Ck+1sur J .

• D’où la preuve par récurrence.
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IV Fonctions convexes

4.1 Généralités

Soit f : I →R. On dit que f est convexe ssi :

∀x, y ∈ I , ∀λ ∈ [0,1], f ((1−λ)x +λy) ≤ (1−λ) f (x)+λ f (y).

Définition 10

Remarque : Si x < y , on a : {(1−λ)x +λy, λ ∈ [0,1]} = [x, y] (paramétrage d’un segment).
En effet :

• soit λ ∈ [0,1], (1−λ)x +λy = x +λ(y −x) ∈ [x, x + (y −x)] = [x, y],

• soit z ∈ [x, y], soit λ ∈R, on a :

z = (1−λ)x +λy ⇔λ= z −x

y −x
.

Posons λ= z−x
y−x . On a z = (1−λ)x +λy et comme z ∈ [x, y], λ ∈ [0,1] donc λ convient.

x y(1−λ)x +λy

f ((1−λ)x +λy)

(1−λ) f (x)+λ f (y)

➪ Exemple 15 : Soit f :R→R, x 7→ |x|. Montrer que f est convexe.

Soit f : I →R convexe.

Pour tout a ∈ I la fonction x 7→ f (x)− f (a)
x−a est croissante sur I \ {a}.

Proposition 13

Preuve.

Soit f : I →R une fonction convexe.
Pour tous x, y ∈ I , la courbe représentative de f sur [x, y] est en-dessous de sa sécante sur [x, y], c’est-à-dire :

∀x, y ∈ I , x < y, ∀t ∈ [x, y], f (t ) ≤ f (x)− f (y)

x − y
(t −x)+ f (x).

Pour tous x, y ∈ I , la courbe représentative de f en dehors de [x, y] est au-dessus de sa sécante en dehors de
[x, y], c’est-à-dire :

∀x, y ∈ I , x < y, ∀t ∉ [x, y], f (t ) ≥ f (x)− f (y)

x − y
(t −x)+ f (x).

Proposition 14

Preuve.

➪ Exemple 16 : Toute fonction convexe sur un intervalle ouvert est continue.
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4.2 Convexité et fonctions dérivables

Soit f : I →R dérivable.
Les propositions suivantes sont équivalentes :

(i) f est convexe,

(ii) f ′ est croissante sur I ,

(iii) la courbe représentative de f est située au-dessus de ses tangentes, c’est-à-dire :

∀x, a ∈ I , f (x) ≥ f ′(a)(x −a)+ f (a).

Proposition 15

Remarque : Une fonction convexe n’est pas toujours dérivable. Par exemple : f : x 7→ |x| est convexe mais non dérivable en 0.

Preuve.

Soit f : I →R deux fois dérivable.
f est convexe ssi f ′′ ≥ 0 sur I .

Corollaire 4

➪ Exemple 17 :

1. Soit f :R+∗ →R, x 7→ − ln x. f est convexe.

2. Montrer que : ∀x ∈]0,+∞[, ln(x) ≤ x −1

➪ Exemple 18 :

1. La fonction −sin est convexe sur
[
0, π2

]
.

2. Montrer que : ∀x ∈ [
0, π2

]
, 2x
π ≤ sin x ≤ x.

V Fonctions complexes

5.1 Généralités

• On dit que f : I →C est dérivable en a ∈ I ssi son taux d’accroissement en a :

I \ {a} → C

x 7→ f (x)− f (a)

x −a

admet une limite (finie) quand x tend vers a. On appelle alors dérivée de f en a et on note f ′(a) cette
limite.

• On dit que f est dérivable sur I ssi f est dérivable en tout point de I .

Définition 11

Soit f : I →C et a ∈ I . f est dérivable en a si et seulement si Re( f ) et Im( f ) sont dérivables en a, et on a alors :

f ′(a) = Re( f )′(a)+ i Im( f )′(a).

Proposition 16

Remarque :

• Les résultats d’opérations sur les dérivées, dont la formule de Leibnitz, restent valables pour les fonctions à valeurs
complexes.

• Les résultats sur la monotonie et sur les extremums n’ont plus de sens pour les fonctions à valeurs complexes.

5.2 Inégalité des accroissements finis

Soit f : I →C dérivable sur I . Supposons qu’il existe M ∈R tels que pour tout x ∈ I , | f ′(x)| ≤ M , alors :

∀x, y ∈ I , | f (x)− f (y)| ≤ M |x − y |.

Proposition 17 : Inégalité des accroissements finis

11



Remarque : Le théorème de Rolle est faux pour les fonctions à valeurs complexes, par exemple : f : [0,2π] →C, x 7→ e i x . Il en
est de même pour l’égalité des accroissements finis. Cependant, l’inégalité des accroissements finis est vraie.

Preuve.
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