Chapitre 15 : Polyn6mes
Dans tout le chapitre K désignera R ou C.

I Lensemble K[X]

1.1 Définition

—4 Définition 1

e On appelle polynéme P a coefficients dans K tout objet de la forme :

n
P=Y arx*
k=0
ouneN, ay,...,a, € K.
e Ondit que ay, ..., a, sont les coefficients de P et que X est 'indéterminée.
o L'ensemble des polyndmes a coefficients dans KK est noté K[X].

Remarque: X est un objet formel qui ne nécessite pas d’étre défini avec des quantificateurs. Il ne peut pas prendre de valeurs,
donc on ne peut pas poser X = a.

Remarque : La vérité sur les polynémes : un polyndme a coefficients dans KK est une suite de K a support fini, c’est-a-dire
une suite (ay)ken de K telle que :
ANeN,VkeN, k=N= a; =0.

e On appelle polynéme nul et on note 0 le polyndme défini par la suite (ag) ey telle que :
vkeN, ag =0.
* On appelle polynéme constant égal a 1 et on note 1 le polynéme défini par la suite (ay) xen telle que :
ap=1letVkeN*, a;=0.
¢ On appelle indéterminée et on note X le polyndme défini par la suite (ay)xen telle que :
ap=letVkeN\{l}, ar =0,

c’est-a-dire :
VkeN, ar=0k;.

« On peut montrer, en utilisant les définitions des opérations qui suivent que : pour tout # € N, le polyndome X" (défini
par récurrence) est la suite (6, ,) ke de K.
e Onaalors, si P estla suite (ag)ren telleque: VkeN, k= N= a; =0,avec NeN:
N
P=) ay0,...,0,1,0,0,...) ot 1 estle terme n
n=0

N
= Z a, X"
n=0

On a donc retrouvé I'écriture classique des polynoémes.

Définition 2

n n
On dit que deux polynomes P = ) a;X FetQ= Y biX ke K[X] sont égaux si et seulement si ils ont les mémes
k=0 k=0
coefficients :

P=Q < Vkel0,nl], a;= Dby

Remarque:

m n
e SiP= Z apX* avec m < n, on peut écrire: P = Z apX* en posant : Vk > m, ay = 0. La borne haute de la somme peut
k=0 k=0

n n
donc étre augmentée si nécessaire. C’est pourquoi, on peut supposer que P = Z arXFetQ= Z b X k¥ sans perdre de
k=0 k=0
généralité.
e On a, en particulier : un polynome est nul ssi ses coefficients sont nuls.



1.2 Opérations algébriques dans K [X]

n m
Soient P= Y arX¥etQ= Y biX*eK[X].Soient A,y € K. On définit :

k=0 k=0
max(n,m)
¢ la combinaison linéaire : AP+ uQ = Z Aay + ,ubk)X’C
k=0
ouonposear=0sik>netb,=0sik>m.
n+m k
o leproduit: PQ= Y ¢ XX ou:Vke[0,n+ml, ck=) ajby_;.
k=0 1=0

Remarque : La formule du produit correspond bien a la formule "naturelle". Par exemple, pour P= X>—~1etQ=X+3.0na:
PQ=X?-1D(X+3)=Xx3+3X%>-X-3.

Ceci est cohérent avec la formule de la définition car, ici,ona:ap=-1,a;=0,a,=1,Vk>2,a;,=0,by=3, b1 =1etVk>1,
by =0. Ainsi :

® (Cp= a().b() =-3,

e ci1=ap.b1+ar.bp=-1+0=-1,

e co=ag.br+ai.b;1 +ax.by=0+0+3=3,

. 03:ao.b3+a1.b2+a2.b1+a3.b0:0+0+1+O:1.

—4 Définition 4

n
SoitneNet P= Y a;X*eK[X]. Lafonction:
k=0

P: K — K

n
X +— Z akxk.
k=0

est appelée fonction polynomiale associée au polynéme P.

Proposition 1

Soient PQeK[X], A,peK.Ona: - o
AP+ uQ=AP+uQet PQ=PQ.

n m
Preuve. Posons:P= } aka etQ= ) kak etposons ay =0sik>netb,=0sik>m.
k=0

k=0
e Soitxelk,
o max(,m) max(r,m) max(,m)
AP+uQu) = Y Qag+pbpx*=21 Y  axfrp Y ppaf
k=0 k=0 k=0
n m . .
=AY apx*+u Y bk = AP + pQ).
k=0 k=0
Donc: o
AP+ Q= AP+ puQ.
e Soit x ek,
. n k m r n m i n k+m !
PQ)(x) = (Z agx )(Z brx )= Y agbix™ = NN apb_gx’.
k=0 k=0 k=0 =0 I=k+] k=0 =k
Or:
0<k=<n max(0,! —m) < k <min(n,l)
k<sl<k+m O<slsn+m
Donc:
. n+m  min(n,l) ! n+m 1 I
(PQ)(x) = Z Z agb;_x" = Z Z arpb;_rx’,
1=0 k=max(0,/-m) =0 k=0



carsi k< l—-m,alors I - k> mdonc b;_; =0etsi k> nalors a; =0. Ainsi:

n+m

POwW= Y c¢xl=CPYw.
1=0
Donc:
PQ=PQ.
O

Soient PQ e K[X],A, p e K.

o AP +uQeK[X]

e PQeK[X]
Soient P, Q, R € K[X] et soit A € K.

e (P+Q)+R=P+(Q+R) (Associativité de I’addition).

e P+Q=Q+ P (Commutativité de 'addition).

e (PQ).R=P(Q.R) (Associativité de la multiplication).

e PQ = Q.P (Commutativité la multiplication).

e P(Q+R)=(PQ)+ (PR) (distributivité de la multiplication sur ’addition).

e P+0=0+P=P.

e P1=1.P=P.

o A(PQ)=(AP).Q=P(AQ).

n n n
Preuve. Posons P= Y a; XK, Q=Y bXxFetr=Y ¢ xFek(xl.
k=0 k=0 k=0
n n n n n n
o P+Q+R=)Y (ar+bp X+ Y ox¥ =Y (ar+bp)+cpX =Y (ap+ b+ e X =Y e x®+ Y g+ x5 =P+Q+R)
k=0 k=0 k=0 k=0 k=0 k=0

n n
e P+Q=)Y (ar+bpX*=Y p+apxk=qQ+p
k=0 k=0

2n 2n 3n 3n
« Onpose PQ= Y diX*,QR=Y Xk (PQ.R= ) giXFetPQR =Y nexk.

k=0 k;O , k=0 k=0
Soit k€ [0,3n], onaalors: gg =Y djck_;=Y. Y. ambj_mci_;
=0 I=0m=0
k k k-m k k
Deméme,ona:hy= ) amej—m= ). . AmbpChom—p= ) D Gmbj_uCr—; enposantl=m+p
m=0 m=0 p=0 m=0]=m
Or,
Osm=<k 0smsl
{mslsk = {Oslsk
k 1
Ainsi : th Z Z ambl_mck_l:gk
1=0m=0
Donc,ona:
Vke [0,3n], hk:gk
donc:

(PQ).R=P(Q.R)
2n
e Onpose QP =) d,’CXk e K[X].
k=0

Soit k € [0,2n], (;n a:

k k
di = Z aybg_; = Z A—mbm = d;c enposantm=k—1
=0 m=0
donc
PQ=Q.P
n n 2n 2n
« Onpose Q+R= Y ;XK PR=Y X% PQ+R =Y wXFetPQ+PR=Y yx*.
k=0 k=0 k=0 k=0

Soit k€ [0,2n],0ona: u; = Z;CZO ajSg—_1 = Z;C:O ay(bg_j+cr—p) = Z;C:() aib_;+ Z;C=O ajCr—; =dj + 1t = v Donc:

P(Q+R)=(PQ)+(PR)



n n
¢ P+0=0+P=)Y (q+0)Xx* =Y axk=p
k=0 k=0
2n ( k 2n
e P1=1P=) |} alék_l,o)xk: Y arxk=p.
0

k=0\1=0 k=
e A(PQ)=(11).(PQ) = (A1.P).Q = (AP).Q.

Définition 5

Soit P € K[X], on définit les puissances de P par :

P’=1letVneN, P"! = pp"

—{ Proposition 4 : Formule du bindme de Newton }

Soient BQeK[X]etneN,ona
n
P+Q"=)

k=0

N\ Sk An—k
P .
o

—{ Proposition 5 : Formule de factorisation }

Soient Qe K[X] et neN*, ona
n-1
Pn _Ql’l — (P_Q) Z Pan_l_k.
k=0

Remarque : Les propriétés de I'addition et de la multiplication dans IK[X] sont analogues a celles de K, c’est pourquoi les
résultats vus sur les nombres restent vrais sur les polynomes. Les formules du bindme de Newton et de factorisation se
prouvent donc de la méme facon que celles vues dans K.

> Exemple 1: Montrer que:

2n
VReN', (X3 + X2+ X+1) ) (-DFxF = x2m8 4 x2nt 4 x2 41,
k=0



—4 Définition 6

n
Soient P = Z aka e K[X], Q € K[X]. On définit le polynd6me composé, noté Po Q ou P(Q) par:
k=0

PoQ= Z aka.
k=0

Remarque : Il n'y a pas de notion de domaine de définition pour les polynémes, ainsi la composée a toujours un sens.

Proposition 6

Soient Qe K[X].Ona:

n
Preuve. Posons P = Z aka. Soit x € K,
k=0

PoQ)=P(QW) =Y aQ* =Y arQk) =PoQw).
k=0 k=0

Donc:

PoQ=PoQ.

—‘ Proposition 7

Soit BQ, R € K[X] et soient A, u € K.
e AP+uQ)oR=APoR+uQoR
* (PQ)oR=(PoR).(QoR)
« (PoQ)oR=Po(QoR)
e XoP=PoX=P

Remarque : Le dernier point montre que P(X) = P. On peut donc choisir de noter ou non I'indéterminée.
s k - k -y
Preuve. Posons P= ) apX*,Q=) bpX"etR=) c X" eKIX].
k=0 k=0 k=0

n n n
o AP+uQoR=Y (Aap+ub)R =213 atR*+pu Y brR¥=APoR+uQoR
k=0 k=0 k=0

2n
« Posons PQ =Y diXk.

k=0
2n
(PQoR= )Y diRFet:
k=0
n n n n X n k+n
(PoR).(QoR) =(Z aiR¥ (Z kak) =y 3 akbij” =Y Y agb;_yR' enposant I = k+ j.
k=0 k=0 k=0j=0 k=0 Il=k

2n 1 2n
Donc: (PoR).(QoR) =Y. Y arbj_;R'=Y d;R' = (PQ)oR.
1=0k=0 =0
n
e (PoQ)oR= Z akaoR,
k=0
Montrons que : Vk €N, QkoR: (QoR)k.
— Pour k=0, ona:QkOR: 1= (QOR)k.
- Soit k € N, supposons que:QkORz(QOR)k.Ona:
Q¥*1oR=(Q¥.Q)oR=(QFoR).QoR=(QoR)*.QoR=(QoR)k*1,
- Dong, par récurrence : Vk €N, Qk oR= (QOR)k.
n
Ainsi: (PoQ)oR= Y ar(QoR)¥=Po(QoR).

k=0
° XoP:P:POX



1.3 Degré d’'un polynome
—‘ Définition 7

m
Soit P= Y arX* e K[X].

k=0
Si P est non nul, on appelle degré du polynéme P le plus grand entier naturel n tel que a,, # 0. On note cet entier
deg(P) :

deg P = max(k € [0, m], ay #0).

Si P =0, on pose deg(P) = —oo par convention.
Sideg(P) = neN, le coefficient a, est appelé coefficient dominant de P.
On dit que P est unitaire si et seulement si son coefficient dominant est égal a 1.

n
Remarque: Si P = Z ap X", on peut uniquement dire que deg(P) < n. 1l faut savoir que a,, # 0 pour dire que deg(P) = n. On

k=0
aainsi:
2 sia#0
1 sia=0etb#0
2 _
deg(aX®+bX+c) = 0 sia=0etb=0etc#0

—o0o Sia=b=c=0.

Définition 8

Soit n € N, on note K, [X] 'ensemble des polyndmes de degré inférieur ou égala n :

KnlX]={PeK[X], deg(P) < n}

1.4 Opérations sur les degrés

—‘ Proposition 8

Soient B, Q € K[X] et A € K. Alors :

1. deg(P + Q) < max(deg(P),deg(Q));
De plus, si deg(P) # deg(Q), alors deg(P + Q) = max(deg(P),deg(Q));
SidelkK*, deg(A.P) = deg(P) et si A =0 alors deg(AP) = —o0;
deg(PQ) = deg(P) +deg(Q);
Si P #0, soit neN, deg(P") = n.deg(P);
Si deg(Q) = 1, deg(P o Q) = deg(P).deg(Q).

e PN

Preuve.






> Exemple 2:
Onpose:P=X3-X?+1etQ=X-5,calculer:

e deg(3P+5Q):

o deg(P+X2.Q):

e deg(P - XZ.Q) :

e deg(PQ):

o deg(PQ?):

o deg(P.(3P+5Q)?):

o deg(P(X%)):

o deg(P(X®).Q(X)):

o deg(P(X)3.Q(X)):

> Exemple 3:
Déterminer I'ensemble des P € K[X] tels que :
P(X+1)-P(X)=X.

Remarque : Dans ce type de questions, on cherche d’abord des informations sur le degré. Si les calculs ne sont pas trop
compliqués, on pourra alors raisonner par coefficients indéterminés.



Corollaire 1

Soient LQ € K[X],ona:
PQ=0<P=00uQ=0.

Remarque : Par contraposée, le produit de deux polynémes non nuls est non nul.

Preuve.

Corollaire 2

Soit n € N, soient B, Q € K,[X], soient A, p € K, alors :

AP+ uQ e K,[X].

Preuve.



II Divisibilité et division euclidienne dans K[ X]

2.1 Divisibilité dans K[X]

Définition 9

Soient A, B € K[X]. On dit que B divise A dans K[X] ou que A est un multiple de B dans K[X] et on note B|A s'il
existe C € K[X] telque: A= BC.

Proposition 9

Soient A, B € K[X] avec A #0. Si B| A, alors :
degB < deg A.

Preuve.

2.2 Division euclidienne dans K[ X]

—{ Théoreme 1 : division euclidienne }

Soient A, B € K[X] tels que B # 0. Alors, il existe un unique couple (Q, R) € (K[X])? tel que:

A=BQ+R
deg(R) < deg(B)

On appelle Q le quotient et R le reste dans la division euclidienne de A par B.

Remarque : En pratique, on utilise le méme algorithme pour la division euclidienne de polynémes que pour la division
euclidienne de nombres.

X3-3X%+3X+1 | X-2
-(X3-2X?% X2-X+1
~X%24+3X+1
—-(-X2+2X)
X+1
—-(X-2)
3

Preuve.

10



Corollaire 3

Soit A, B € K[X] avec B #0. On a: B divise A si et seulement si le reste de la division euclidienne de A par B est
nul.

11



> Exemple 4: Soient a,b€R,onpose P=X*+ X3 +3X?+aX+betQ=X>+1.
1. Effectuer la division euclidienne de P par Q.
2. Déterminer a et b tels que Q|P.

III Evaluation polynomiale et racines
3.1 Evaluation polynomiale
—‘ Définition 10

m
SoitP=)" apX* € K[X], soit a € K. On pose :
k=0

m
P(a@) =) apa*.
k=0

Remarque:

e Lorsqu’on évalue un polynéme P = i arX*enack,ona: P(a) = i ara®. C'est en fait la fonction polynomiale qui
est évaluée en a. En termes de polyrlkgrorles, le polynéme P est (:ompoks:é0 avec le polyndme constant égal a a.

¢ Lécriture P(a) = Zn: ara*

coefficients, soit anzo— 2 produits.

Afin de minimiser le nombre de produits dans I'évaluation polynomiale on peut utiliser la méthode de Horner. Cette

meéthode consiste a écrire :

nécessite de faire n — 1 produits pour le calcul des puissances de a et n produit avec les

P(a) = ((((ap.a+an-1)a+an—2)a+...)a+ ay)a) + ay.

Iy a donc n produits a effectuer. A chaque étape, on multiplie le terme par a et on ajoute le coefficient.
Par exemple, si P =3X* -2X3 +7X? + X — 1 et a =2, on part du coefficient dominant qui est 3 eton a:

—_ = —_ —_

3 ceex2—2 4 e x 247 15 ceex 241 31 ceex2—1 61

Donc P(2) =61.

3.2 Racines d'un polynome

Définition 11

On dit que a € K est une racine dans K d'un polynéme P € K[X] ssi P(a) = 0.

12



Proposition 10

SoitacK et PeK[X].
o Lereste dans la division euclidienne de P par (X — a) est P(a).
e aestracine de P si et seulement si X — a divise P.

Preuve.

Proposition 11

Soit P € K[X], neN* et a;,--- a, € K deux a deux distincts.

n
ay,ay,---,ay, sont racines de P si et seulement si H (X—a;)|P.
i=1

> Exemple 5: Montrer que :
X*-2X|(X-D*+ (X -D*-2.

> Exemple 6: Déterminer tous les P de degré 3 tels que P(0) = P(1) = P(2) =0.

13



3.3 Nombre de racines

Proposition 12

Un polyndme non nul de degré n € N a au plus 7 racines deux a deux distinctes.

Preuve.

Corollaire 4

o Un polyndéme de K, [X] ayant au moins 7 + 1 racines deux a deux distinctes est le polynéme nul.
» Le seul polynéme qui posséde une infinité de racines (distinctes) est le polynéme nul.

Remarque : Si on montre qu'un polynéme est nul sur un ensemble infini, alors il est nul.
> Exemple 7:

n
Soit P e R, [X] tel que Z Pz(k) = 0. Montrer que P =0.
k=0

—4 Corollaire 5

n
Soit P= ) arX*eK[X].Ona:
k=0

autrement dit :
(Vke[0,n], ar =0) < (Vx €K, P(x) =0).

14



Preuve.

Corollaire 6

Soient P,Q € K[X], soit D un ensemble infini :

P=Qe& VYxeD, P(x)=Qx).

Remarque : Ce résultat permet de faire des identifications de fonctions polynomiales.

3.4 Multiplicité d'une racine

—4 Définition 12

Soit P un polyndme non nul de K[X] et a € K une racine de P. On appelle ordre de multiplicité de la racine a, le
plus grand entier m € N* tel que (X — a)™ divise P, autrement dit, I'’entier m € N* tel que :

X-a™|P et X-a™'yp

On dit alors que a est racine d’ordre m ou de multiplicité m de P.

Remarque : On parle de racine simple pour m = 1, double pour m = 2 et triple pour m = 3.

Proposition 13

Soit P e K[X], ae K et m € N*.
a est racine de multiplicité m de P ssi il existe Q € K[X] tel que P = (X — a)™Q et a n’est pas racine de Q.

Preuve.

Corollaire 7

Soit P e K[X], P #0, soit n = deg(P).
P admet au plus n racines comptées avec leur multiplicité.

Remarque : Compter les racines avec leur multiplicité signifie qu’on ne compte pas chaque racine de la méme facon mais
qu’on leur attribue un poids. Par exemple, pour P = (X — 1)3(X —2)2, P admet 2 racines distinctes : 1 de multiplicité 3 et 2 de
multiplicité de 2 donc 5 racines comptées avec leur multiplicité.

15



Preuve.

3.5 Polynomes scindés

Définition 13

Soit P € K[X] de degré n € N*. On dit que P est scindé dans K ssi il existe A € K*, ay, ..., a, € K tels que :

n
P=A[]X-aj)
j=1

Remarque : La notion de polynéme scindé dépend de KK :
e P=X%2-3X+2=(X-1)(X-2) estscindé dans R[X] et dans C[X].
o P=X3+X=X(X?+1)=X(X+1i)(X—1i) est scindé dans C[X] et pas dans R[X].

—‘ Proposition 14

deux distincts, my,..., m; € N* tels que :
P:/lﬁ(X—aj)mf.
j=1
On a alors :
¢ ) estle coefficient dominant de P,
* les a; € K sont les racines de P de multiplicité m;;,

k
o Y mj=deg(P).
j=1

Soit P € K[X] un polyndme de degré n € N*. P est scindé dans K ssi il existe 1 € K*, ke N*, a3, ..., ar € K deux a

Remarque : Ce résultat est la définition dans laquelle on a regroupé les facteurs identiques.

3.6 Somme et produit des racines d’'un polynéme

—{ Proposition 15 : Relations coefficients/racines }

k=0

n
que:P=A[](X-xj).Ona:
j=1

n n

an-1 (204}
> xj=— et  [[xi=(-D"—.
i=1 apn i=1 ap

n
Soit P= Y a;X* € K[X] un polynéme de degré n € N*, scindé dans K[X]. Alors il existe A € K*, x;,

o Xn €K tels

16




Remarque : Ce résultat donne la somme et le produit des racines d'un polynémes scindés. On retrouve le cas particulier les
polynémes de degré 2 : P = aX? + bX + c oi1 la somme des racines vaut —% et le produit vaut £.

Preuve.

IV Dérivation dans K[ X]
4.1 Généralités

—4 Définition 14

n
Soit n €N, soit P = Z arX* e K[X]. On appelle polynéme dérivé de P et on note P’ le polynome défini par :
k=0

n n-1
P'=Y karX*'=Y (+Da X"
k=1 =0

Remarque : [l n'y a pas d’étude de dérivabilité a faire et surtout pas de taux d’accroissement a écrire.

—4 Proposition 16

Soit Pe R[X].Ona:

(P) = (D).

Autrement dit la fonction polynomiale associée a la dérivée est la dérivée de la fonction polynomiale associée au
polynéme.

—4 Définition 15

Soit P € K[X]. On définit par récurrence les polyndmes dérivés successifs de P en posant

PO =petvneN, PV = (p™y

—4 Proposition 17

Soient n, ke N,
Xk sik<n

n!
(X”l) (k) = m
0 sinon.

17



Preuve.

Proposition 18

Soit P € K[X], soit k€ N.

deg(P)—1 sidegP=1
—00

deg(P’) - { sinon et deg(P (k)) - {

deg(P) -k
—00

sidegP =k
sinon

Corollaire 8

Soit P e K[X] soitn e N,
degP < n< P"*V =,

> Exemple 8:

1. Onpose: P=X*+3X3+2X+5etQ=X>-8X+1.
Calculer les degrés de PQ’, (PoQ)’, P XQ, P'-4XQ, P"0Q.

n
2. Soitn €N, on pose: P = Z XketQ:Xz—X+1.
k=0
Calculer le degré et le coefficient dominant de P’ o Q.

18




4.2 Opérations sur les dérivées

—4 Proposition 19

Soient LQ € K[X].On a:
1. VA pueK, AP+ uQ) = AP +puQ'.
2. (PQ) =P .Q+PQ.

—{ Proposition 20 : Formule de Leibniz }

Soient Q€ K[X],neN.Ona:

n

(PQ)(H) — Z

k=0

n

pk o=k
K Q

—4 Proposition 21

Soient BQ € K[X].On a:
(PoQ)=Q' x(P'oQ)

4.3 Formule de Taylor polynomiale

—{ Proposition 22 : Formule de Taylor polynomiale }

Soit P € K[X], soit N € N tel que deg(P) < N. Soit a € K. Alors :
N p® (g .
PX+a)=) 0 X
k=0
et: N p(k)
P (a)
Px)=Y X-a).
= K

Remarque : Cette formule permet de privilégier le point a.

Preuve.

19



> Exemple 9: Déterminer tous les polynémes P tels que :
P(2)=6,P'(2)=1,P"(2) =4,

vn=3, P2 =0.
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4.4 Dérivées successives et multiplicité

Proposition 23

Soit P e K[X], ae K et m € N*.
a est racine de multiplicité m de P ssi, pour tout k € [0, m — 1], a est racine de P*¥ et a n’est pas racine de P,

Preuve.

Corollaire 9

Soit P € K[X], soit a € K une racine de multiplicité m € N* de P, soit k € [0, m — 1].
Alors a est racine de multiplicité m — k de P,

Preuve.
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Corollaire 10

Soit P € R[X], soit a € C une racine de P de multiplicité m € N*.
Alors a est racine de P de multiplicité m.

Preuve.

> Exemple 10:
Soit P € R[X], soit a € R. On pose :

Q= %(X—a)(P’+P’(a)) —P+P(a).

Montrer que a est une racine au moins triple de Q.

> Exemple 11:
1. Montrer que : (X —4)|X5-9X%+24X% —16.

2. Soit n € N, montrer que : (X — 1)?|nX"! —(n+ 1DX" +1.
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V Polynomes irréductibles

5.1 Théoréme de D’Alembert-Gauss

—{ Théoréme 2 : Théoréme de d’Alembert-Gauss }

Tout polyndme non constant de C[X] posséde au moins une racine dans C.

—4 Corollaire 11

¢ Tout polyndme non constant de C[X] est scindé.

¢ Tout polynéme non nul de C[X] de degré n = 0 admet exactement n racines comptées avec leur multipli-
cité.

5.2 Polynomes irréductibles

Définition 16

Soient P,Q € K[X] \{0}. P et Q sont dits associés ssi il existe 1 € K* tel que P = AQ.

Remarque : Les polynomes associés sont les polynomes tels que P|Q et Q|P.

—4 Définition 17

On dit que P € K[X] est irréductible dans IK[X] si P est non constant et si les seuls diviseurs de P dans [K[X] sont
les polyndmes constants non nuls (i.e les polynémes associés a 1) et les polynémes associés a P.
Ainsi, un polyndéme P € K[X] est irréductible ssi :

e P estnon constant

e VAeK[X],AIP = 3dAleK*, A=AouA=AP

5.3 Polynomes irréductibles de C[X]

Proposition 24

Les polynémes irréductibles de C[X] sont les polynomes de degré 1.

Preuve.
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—4 Théoréeme 3

Soit P un polynéme non nul de C[X], alors P s’écrit de fagcon unique (a I'ordre pres des facteurs) en produit de
polynomes irréductibles de C[X] :

n
P=A]](X-ap™
k=1

ou n €N, A estle coefficient dominantde P, a;,---, a, sont les racines deux a deux distinctes de P de multiplicité
my,---, My € N*,

> Exemple 12: Soit n € N*, factoriser X" — 1 dans C[X].

Proposition 25

Soient P,Q € C[X], on a: P|Q ssi pour toute racine a € C de P de multiplicité m, a est racine de Q de multiplicité
m' avec m' = m.

5.4 Polyndémes irréductibles dans R[X]

Proposition 26

Les polynoémes irréductibles de R[X] sont
* les polynomes de degré 1;
« les polynémes de degré 2 dont le discriminant est strictement négatif.
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Preuve.

—‘ Théoréme 4

Soit P un polyndme non nul de R[X], alors P s’écrit de maniere unique (a I'ordre prés)en produit de polynémes
irréductibles de R[X] :
p q
P=A]]X-ap™ [](X*+bjX +c))™
i=1 j=1
ou p,q €N, A €R est le coefficient dominant de P, aj, ..., a, sont les racines réelles deux a deux distinctes de P

de multiplicités respectives my, ..., my € N*, les couples de réels (by, c1), ..., (bg, cq) sont deux a deux distincts et
tels que pour tout k € [1, g1, bi —4cpy<0etm,..,nge N*.
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> Exemple 13:
Factoriser dans R[X] les polyndmes suivants :
o« PI=X3-4X?>+X+86,
o« P=X34+X%2-2,
o Py=(X?+1)?-(X+1)7?
o Py=(X?+2)2+X?
e Ps=X34+X%+1.

VI Introduction a la décomposition en éléments simples

—4 Définition 18

On appelle fraction rationnelle un quotient de polynémes dont le dénominateur est non nul :

g,P,QEK[X],Q#O.

Les zéros de la fraction rationnelle % sont les racines de P.

Les poles de la fraction rationnelle % sont les racines de Q.

Remarque : On ne donne pas la définition ni les propriétés formelles des fractions rationnelles. Lobjectif de cette partie est
calculatoire. On remarquera quand méme que, comme pour les polynémes, il n'y a pas de notion de domaine de définition.

—{ Théoréme 5 : décomposition en éléments simples d’'une fraction rationnelle a p6les simples }

Soient P, Q € K[X], avec Q # 0 tel que Q soit scindé a racines simples : il existe 1 € K*, a,...,a, € K deux a deux
n

distincts tels que Q = 1 l_[ (X — ay). Soit A le quotient de la division euclidienne de P par Q. Alors, il existe un
k=1

unique (A, ...,1,) e K" tel que :

Ag

X-a;’

P n
—=A+
M
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Remarque:
o SidegP <degQ,alors A=0.

e Ce théoréme ne concerne que les fractions rationnelles a poles simples, la décomposition en élément simple existe
dans les autres cas mais sa forme doit étre donnée.

» La décomposition en éléments simples est utile pour calculer des primitives et des dérivées k-iémes.

o> Exemple 14: Déterminer la décomposition en éléments simples de :

_ X%+2X+5
L B =523%0

> Exemple 15:
1. Déterminer la décomposition en éléments simples de :

1
XX+1DX+2)
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2. Onpose:
f: R\{-2,-1,00 — R
1
x(x+1D(x+2)
(a) Déterminer une primitive de f.

(b) Déterminer les dérivées n-iemes de f pour n € N.

3. Soit n € N*, calculer :
n

,;k(k+1)(k+2)'

o> Exemple 16: Soit n € N*, déterminer la décomposition en éléments simples dans C[X] de :

1
1. Fn:X”—l’
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. Gp=

Xl’l—l

xn—1’
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