
Chapitre 15 : Polynômes

Dans tout le chapitre K désignera R ou C.

I L’ensembleK[X ]

1.1 Définition

• On appelle polynôme P à coefficients dans K tout objet de la forme :

P =
n∑

k=0
ak X k

où n ∈N, a0, ..., an ∈K.

• On dit que a0, ..., an sont les coefficients de P et que X est l’indéterminée.

• L’ensemble des polynômes à coefficients dans K est noté K[X ].

Définition 1

Remarque : X est un objet formel qui ne nécessite pas d’être défini avec des quantificateurs. Il ne peut pas prendre de valeurs,
donc on ne peut pas poser X = a.

Remarque : La vérité sur les polynômes : un polynôme à coefficients dans K est une suite de K à support fini, c’est-à-dire
une suite (ak )k∈N de K telle que :

∃N ∈N, ∀k ∈N, k ≥ N =⇒ ak = 0.

• On appelle polynôme nul et on note 0 le polynôme défini par la suite (ak )k∈N telle que :

∀k ∈N, ak = 0.

• On appelle polynôme constant égal à 1 et on note 1 le polynôme défini par la suite (ak )k∈N telle que :

a0 = 1 et ∀k ∈N∗, ak = 0.

• On appelle indéterminée et on note X le polynôme défini par la suite (ak )k∈N telle que :

a1 = 1 et ∀k ∈N\ {1}, ak = 0,

c’est-à-dire :
∀k ∈N, ak = δk,1.

• On peut montrer, en utilisant les définitions des opérations qui suivent que : pour tout n ∈N, le polynôme X n (défini
par récurrence) est la suite (δk,n)k∈N de K.

• On a alors, si P est la suite (ak )k∈N telle que : ∀k ∈N, k ≥ N =⇒ ak = 0, avec N ∈N :

P =
N∑

n=0
an(0, . . . ,0,1,0,0, . . . ) où 1 est le terme n

=
N∑

n=0
an X n

On a donc retrouvé l’écriture classique des polynômes.

On dit que deux polynômes P =
n∑

k=0
ak X k et Q =

n∑
k=0

bk X k ∈K[X ] sont égaux si et seulement si ils ont les mêmes

coefficients :
P =Q ⇐⇒ ∀k ∈ �0,n�, ak = bk

Définition 2

Remarque :

• Si P =
m∑

k=0
ak X k avec m ≤ n, on peut écrire : P =

n∑
k=0

ak X k en posant : ∀k > m, ak = 0. La borne haute de la somme peut

donc être augmentée si nécessaire. C’est pourquoi, on peut supposer que P =
n∑

k=0
ak X k et Q =

n∑
k=0

bk X k sans perdre de

généralité.

• On a, en particulier : un polynôme est nul ssi ses coefficients sont nuls.
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1.2 Opérations algébriques dansK[X ]

Soient P =
n∑

k=0
ak X k et Q =

m∑
k=0

bk X k ∈K[X ]. Soient λ,µ ∈K. On définit :

• la combinaison linéaire : λP +µQ =
max(n,m)∑

k=0
(λak +µbk )X k

où on pose ak = 0 si k > n et bk = 0 si k > m.

• le produit : P.Q =
n+m∑
k=0

ck X k où : ∀k ∈ �0,n +m�, ck =
k∑

l=0
al bk−l .

Définition 3

Remarque : La formule du produit correspond bien à la formule "naturelle". Par exemple, pour P = X 2−1 et Q = X +3. On a :

PQ = (X 2 −1)(X +3) = X 3 +3X 2 −X −3.

Ceci est cohérent avec la formule de la définition car, ici, on a : a0 =−1, a1 = 0, a2 = 1, ∀k > 2, ak = 0, b0 = 3, b1 = 1 et ∀k > 1,
bk = 0. Ainsi :

• c0 = a0.b0 =−3,

• c1 = a0.b1 +a1.b0 =−1+0 =−1,

• c2 = a0.b2 +a1.b1 +a2.b0 = 0+0+3 = 3,

• c3 = a0.b3 +a1.b2 +a2.b1 +a3.b0 = 0+0+1+0 = 1.

Soit n ∈N et P =
n∑

k=0
ak X k ∈K[X ]. La fonction :

P̃ : K → K

x 7→
n∑

k=0
ak xk .

est appelée fonction polynomiale associée au polynôme P .

Définition 4

Soient P,Q ∈K[X ], λ,µ ∈K. On a : ãλP +µQ =λP̃ +µQ̃ et P̃Q = P̃Q̃.

Proposition 1

Preuve. Posons : P =
n∑

k=0
ak X k et Q =

m∑
k=0

bk X k et posons ak = 0 si k > n et bk = 0 si k > m.

• Soit x ∈K,

ãλP +µQ(x) =
max(n,m)∑

k=0
(λak +µbk )xk =λ

max(n,m)∑
k=0

ak xk +µ
max(n,m)∑

k=0
bk xk

=λ
n∑

k=0
ak xk +µ

m∑
k=0

bk xk =λP̃ (x)+µQ̃(x).

Donc : ãλP +µQ =λP̃ +µQ̃.

• Soit x ∈K,

(P̃Q̃)(x) =
(

n∑
k=0

ak xk

)
.

(
m∑

k=0
bk xk

)
=

n∑
k=0

m∑
j=0

ak b j xk+ j =
l=k+ j

n∑
k=0

k+m∑
l=k

ak bl−k xl .

Or : {
0 ≤ k ≤ n
k ≤ l ≤ k +m

⇔
{

max(0, l −m) ≤ k ≤ min(n, l )
0 ≤ l ≤ n +m

Donc :

(P̃Q̃)(x) =
n+m∑
l=0

min(n,l )∑
k=max(0,l−m)

ak bl−k xl =
n+m∑
l=0

l∑
k=0

ak bl−k xl ,
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car si k < l −m, alors l −k > m donc bl−k = 0 et si k > n alors ak = 0. Ainsi :

(P̃Q̃)(x) =
n+m∑
l=0

cl xl = (P̃Q)(x).

Donc :
P̃Q = P̃Q̃.

Soient P,Q ∈K[X ],λ,µ ∈K.

• λP +µQ ∈K[X ]

• P.Q ∈K[X ]

Proposition 2

Soient P,Q,R ∈K[X ] et soit λ ∈K.

• (P +Q)+R = P + (Q +R) (Associativité de l’addition).

• P +Q =Q +P (Commutativité de l’addition).

• (P.Q).R = P.(Q.R) (Associativité de la multiplication).

• P.Q =Q.P (Commutativité la multiplication).

• P.(Q +R) = (P.Q)+ (P.R) (distributivité de la multiplication sur l’addition).

• P +0 = 0+P = P .

• P.1 = 1.P = P .

• λ(P.Q) = (λP ).Q = P.(λQ).

Proposition 3

Preuve. Posons P =
n∑

k=0
ak X k , Q =

n∑
k=0

bk X k et R =
n∑

k=0
ck X k ∈K[X ].

• (P +Q)+R =
n∑

k=0
(ak +bk )X k +

n∑
k=0

ck X k =
n∑

k=0
((ak +bk )+ck )X k =

n∑
k=0

(ak + (bk +ck ))X k =
n∑

k=0
ak X k +

n∑
k=0

(bk +ck X k ) = P + (Q +R)

• P +Q =
n∑

k=0
(ak +bk )X k =

n∑
k=0

(bk +ak )X k =Q +P

• On pose P.Q =
2n∑

k=0
dk X k , Q.R =

2n∑
k=0

ek X k , (P.Q).R =
3n∑

k=0
gk X k et P.(Q.R) =

3n∑
k=0

hk X k .

Soit k ∈ �0,3n�, on a alors : gk =
k∑

l=0
dl ck−l =

k∑
l=0

l∑
m=0

am bl−m ck−l

De même, on a : hk =
k∑

m=0
am ek−m =

k∑
m=0

k−m∑
p=0

am bp ck−m−p =
k∑

m=0

k∑
l=m

am bl−m ck−l en posant l = m +p

Or, {
0 ≤ m ≤ k
m ≤ l ≤ k

⇐⇒
{

0 ≤ m ≤ l
0 ≤ l ≤ k

Ainsi : hk =
k∑

l=0

l∑
m=0

am bl−m ck−l = gk

Donc , on a :
∀k ∈ �0,3n�, hk = gk

donc :
(P.Q).R = P.(Q.R)

• On pose QP =
2n∑

k=0
d ′

k X k ∈K[X ].

Soit k ∈ �0,2n�, on a :

dk =
k∑

l=0
al bk−l =

k∑
m=0

ak−m bm = d ′
k en posant m = k − l

donc
P.Q =Q.P

• On pose Q +R =
n∑

k=0
sk X k , P.R =

n∑
k=0

tk X k , P.(Q +R) =
2n∑

k=0
uk X k et P.Q +P.R =

2n∑
k=0

vk X k .

Soit k ∈ �0,2n�, on a : uk =∑k
l=0 al sk−l =

∑k
l=0 al (bk−l + ck−l ) =∑k

l=0 al bk−l +
∑k

l=0 al ck−l = dk + tk = vk Donc :

P.(Q +R) = (P.Q)+ (P.R)
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• P +0 = 0+P =
n∑

k=0
(ak +0)X k =

n∑
k=0

ak X k = P

• P.1 = 1.P =
2n∑

k=0

(
k∑

l=0
alδk−l ,0

)
X k =

2n∑
k=0

ak X k = P .

• λ(P.Q) = (λ1).(P.Q) = (λ1.P ).Q = (λP ).Q.

Soit P ∈K[X ], on définit les puissances de P par :

P 0 = 1 et ∀n ∈N, P n+1 = P.P n .

Définition 5

Soient P,Q ∈K[X ] et n ∈N, on a

(P +Q)n =
n∑

k=0

(
n

k

)
P kQn−k .

Proposition 4 : Formule du binôme de Newton

Soient P,Q ∈K[X ] et n ∈N∗, on a

P n −Qn = (P −Q)
n−1∑
k=0

P kQn−1−k .

Proposition 5 : Formule de factorisation

Remarque : Les propriétés de l’addition et de la multiplication dans K[X ] sont analogues à celles de K, c’est pourquoi les
résultats vus sur les nombres restent vrais sur les polynômes. Les formules du binôme de Newton et de factorisation se
prouvent donc de la même façon que celles vues dans K.

➪ Exemple 1 : Montrer que :

∀n ∈N∗, (X 3 +X 2 +X +1)
2n∑

k=0
(−1)k X k = X 2n+3 +X 2n+1 +X 2 +1.
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Soient P =
n∑

k=0
ak X k ∈K[X ],Q ∈K[X ]. On définit le polynôme composé, noté P ◦Q ou P (Q) par :

P ◦Q =
n∑

k=0
akQk .

Définition 6

Remarque : Il n’y a pas de notion de domaine de définition pour les polynômes, ainsi la composée a toujours un sens.

Soient P,Q ∈K[X ]. On a : �P ◦Q = P̃ ◦Q̃.

Proposition 6

Preuve. Posons P =
n∑

k=0
ak X k . Soit x ∈K,

P̃ ◦Q̃(x) = P̃
(
Q̃(x)

)= n∑
k=0

akQ̃(x)k =
ãn∑

k=0
akQk (x) = �P ◦Q(x).

Donc : �P ◦Q = P̃ ◦Q̃.

Soit P,Q,R ∈K[X ] et soient λ,µ ∈K.

• (λP +µQ)◦R =λP ◦R +µQ ◦R

• (P.Q)◦R = (P ◦R).(Q ◦R)

• (P ◦Q)◦R = P ◦ (Q ◦R)

• X ◦P = P ◦X = P

Proposition 7

Remarque : Le dernier point montre que P (X ) = P . On peut donc choisir de noter ou non l’indéterminée.

Preuve. Posons P =
n∑

k=0
ak X k , Q =

n∑
k=0

bk X k et R =
n∑

k=0
ck X k ∈K[X ].

• (λP +µQ)◦R =
n∑

k=0
(λak +µbk )Rk =λ

n∑
k=0

ak Rk +µ
n∑

k=0
bk Rk =λP ◦R +µQ ◦R

• Posons P.Q =
2n∑

k=0
dk X k .

(P.Q)◦R =
2n∑

k=0
dk Rk et :

(P ◦R).(Q ◦R) =
(

n∑
k=0

ak Rk

)(
n∑

k=0
bk Rk

)
=

n∑
k=0

n∑
j=0

ak b j Rk+ j =
n∑

k=0

k+n∑
l=k

ak bl−k R l en posant l = k + j .

Donc : (P ◦R).(Q ◦R) =
2n∑

l=0

l∑
k=0

ak bl−k R l =
2n∑

l=0
dl R l = (P.Q)◦R.

• (P ◦Q)◦R =
n∑

k=0
akQk ◦R.

Montrons que : ∀k ∈N, Qk ◦R = (Q ◦R)k .
– Pour k = 0, on a :Qk ◦R = 1 = (Q ◦R)k .
– Soit k ∈N, supposons que : Qk ◦R = (Q ◦R)k . On a :

Qk+1 ◦R = (Qk .Q)◦R = (Qk ◦R).Q ◦R = (Q ◦R)k .Q ◦R = (Q ◦R)k+1.
– Donc, par récurrence : ∀k ∈N, Qk ◦R = (Q ◦R)k .

Ainsi : (P ◦Q)◦R =
n∑

k=0
ak (Q ◦R)k = P ◦ (Q ◦R).

• X ◦P = P = P ◦X
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1.3 Degré d’un polynôme

Soit P =
m∑

k=0
ak X k ∈K[X ].

Si P est non nul, on appelle degré du polynôme P le plus grand entier naturel n tel que an ̸= 0. On note cet entier
deg(P ) :

degP = max(k ∈ �0,m�, ak ̸= 0).

Si P = 0, on pose deg(P ) =−∞ par convention.
Si deg(P ) = n ∈N, le coefficient an est appelé coefficient dominant de P .
On dit que P est unitaire si et seulement si son coefficient dominant est égal à 1.

Définition 7

Remarque : Si P =
n∑

k=0
ak X k , on peut uniquement dire que deg(P ) ≤ n. Il faut savoir que an ̸= 0 pour dire que deg(P ) = n. On

a ainsi :

deg(aX 2 +bX + c) =


2 si a ̸= 0
1 si a = 0 et b ̸= 0
0 si a = 0 et b = 0 et c ̸= 0
−∞ si a = b = c = 0.

Soit n ∈N, on note Kn[X ] l’ensemble des polynômes de degré inférieur ou égal à n :

Kn[X ] = {P ∈K[X ] , deg(P ) ≤ n}

Définition 8

1.4 Opérations sur les degrés

Soient P, Q ∈K[X ] et λ ∈K. Alors :

1. deg(P +Q) ≤ max(deg(P ),deg(Q)) ;
De plus, si deg(P ) ̸= deg(Q), alors deg(P +Q) = max(deg(P ),deg(Q)) ;

2. Si λ ∈K∗, deg(λ.P ) = deg(P ) et si λ= 0 alors deg(λP ) =−∞ ;

3. deg(PQ) = deg(P )+deg(Q) ;

4. Si P ̸= 0, soit n ∈N, deg(P n) = n.deg(P ) ;

5. Si deg(Q) ≥ 1, deg(P ◦Q) = deg(P ).deg(Q).

Proposition 8

Preuve.
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➪ Exemple 2 :
On pose : P = X 3 −X 2 +1 et Q = X −5, calculer :

• deg(3P +5Q) :

• deg(P +X 2.Q) :

• deg(P −X 2.Q) :

• deg(P.Q) :

• deg(P.Q2) :

• deg(P.(3P +5Q)2) :

• deg(P (X 3)) :

• deg(P (X 3).Q(X )) :

• deg(P (X )3.Q(X )) :

➪ Exemple 3 :
Déterminer l’ensemble des P ∈K[X ] tels que :

P (X +1)−P (X ) = X .

Remarque : Dans ce type de questions, on cherche d’abord des informations sur le degré. Si les calculs ne sont pas trop
compliqués, on pourra alors raisonner par coefficients indéterminés.
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Soient P,Q ∈K[X ], on a :
P.Q = 0 ⇐⇒ P = 0 ou Q = 0.

Corollaire 1

Remarque : Par contraposée, le produit de deux polynômes non nuls est non nul.

Preuve.

Soit n ∈N, soient P,Q ∈Kn[X ], soient λ,µ ∈K, alors :

λP +µQ ∈Kn[X ].

Corollaire 2

Preuve.

9



II Divisibilité et division euclidienne dansK[X ]

2.1 Divisibilité dansK[X ]

Soient A,B ∈K[X ]. On dit que B divise A dansK[X ] ou que A est un multiple de B dansK[X ] et on note B |A s’il
existe C ∈K[X ] tel que : A = BC .

Définition 9

Soient A,B ∈K[X ] avec A ̸= 0. Si B |A, alors :
degB ≤ deg A.

Proposition 9

Preuve.

2.2 Division euclidienne dansK[X ]

Soient A,B ∈K[X ] tels que B ̸= 0. Alors, il existe un unique couple (Q,R) ∈ (K[X ])2 tel que :{
A = BQ +R

deg(R) < deg(B)

On appelle Q le quotient et R le reste dans la division euclidienne de A par B .

Théorème 1 : division euclidienne

Remarque : En pratique, on utilise le même algorithme pour la division euclidienne de polynômes que pour la division
euclidienne de nombres.

X 3 −3X 2 +3X +1

−(X 3 −2X 2)
−X 2 +3X +1

−(−X 2 +2X )
X +1

−(X −2)
3

X −2

X 2 −X +1

Preuve.
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Soit A,B ∈K[X ] avec B ̸= 0. On a : B divise A si et seulement si le reste de la division euclidienne de A par B est
nul.

Corollaire 3
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➪ Exemple 4 : Soient a,b ∈R, on pose P = X 4 +X 3 +3X 2 +aX +b et Q = X 2 +1.

1. Effectuer la division euclidienne de P par Q.

2. Déterminer a et b tels que Q|P .

III Evaluation polynomiale et racines

3.1 Evaluation polynomiale

Soit P =
m∑

k=0
ak X k ∈K[X ], soit a ∈K. On pose :

P (a) =
m∑

k=0
ak ak .

Définition 10

Remarque :

• Lorsqu’on évalue un polynôme P =
n∑

k=0
ak X k en a ∈K, on a : P (a) =

n∑
k=0

ak ak . C’est en fait la fonction polynomiale qui

est évaluée en a. En termes de polynômes, le polynôme P est composé avec le polynôme constant égal à a.

• L’écriture P (a) =
n∑

k=0
ak ak nécessite de faire n − 1 produits pour le calcul des puissances de a et n produit avec les

coefficients, soit 2n −2 produits.
Afin de minimiser le nombre de produits dans l’évaluation polynomiale on peut utiliser la méthode de Horner. Cette
méthode consiste à écrire :

P (a) = ((((an .a +an−1)a +an−2)a + . . . )a +a1)a)+a0.

Il y a donc n produits à effectuer. A chaque étape, on multiplie le terme par a et on ajoute le coefficient.
Par exemple, si P = 3X 4 −2X 3 +7X 2 +X −1 et a = 2, on part du coefficient dominant qui est 3 et on a :

3
−→

·· ·×2−2
4

−→
·· ·×2+7

15
−→

·· ·×2+1
31

−→
·· ·×2−1

61

Donc P (2) = 61.

3.2 Racines d’un polynôme

On dit que a ∈K est une racine dans K d’un polynôme P ∈K[X ] ssi P (a) = 0.

Définition 11
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Soit a ∈K et P ∈K[X ].

• Le reste dans la division euclidienne de P par (X −a) est P (a).

• a est racine de P si et seulement si X −a divise P .

Proposition 10

Preuve.

Soit P ∈K[X ], n ∈N∗ et a1, · · ·an ∈K deux à deux distincts.

a1, a2, · · · , an sont racines de P si et seulement si
n∏

i=1
(X −ai )|P.

Proposition 11

➪ Exemple 5 : Montrer que :
X 2 −2X |(X −1)4 + (X −1)2 −2.

➪ Exemple 6 : Déterminer tous les P de degré 3 tels que P (0) = P (1) = P (2) = 0.
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3.3 Nombre de racines

Un polynôme non nul de degré n ∈N a au plus n racines deux à deux distinctes.

Proposition 12

Preuve.

• Un polynôme de Kn[X ] ayant au moins n +1 racines deux à deux distinctes est le polynôme nul.

• Le seul polynôme qui possède une infinité de racines (distinctes) est le polynôme nul.

Corollaire 4

Remarque : Si on montre qu’un polynôme est nul sur un ensemble infini, alors il est nul.

➪ Exemple 7 :

Soit P ∈Rn[X ] tel que
n∑

k=0
P 2(k) = 0. Montrer que P = 0.

Soit P =
n∑

k=0
ak X k ∈K[X ]. On a :

P = 0 ⇐⇒ P̃ = 0,

autrement dit :
(∀k ∈ �0,n�, ak = 0) ⇐⇒ (∀x ∈K, P (x) = 0).

Corollaire 5
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Preuve.

Soient P,Q ∈K[X ], soit D un ensemble infini :

P =Q ⇔∀x ∈ D, P̃ (x) = Q̃(x).

Corollaire 6

Remarque : Ce résultat permet de faire des identifications de fonctions polynomiales.

3.4 Multiplicité d’une racine

Soit P un polynôme non nul de K[X ] et a ∈K une racine de P . On appelle ordre de multiplicité de la racine a, le
plus grand entier m ∈N∗ tel que (X −a)m divise P , autrement dit, l’entier m ∈N∗ tel que :

(X −a)m | P et (X −a)m+1 ̸ |P

On dit alors que a est racine d’ordre m ou de multiplicité m de P .

Définition 12

Remarque : On parle de racine simple pour m = 1, double pour m = 2 et triple pour m = 3.

Soit P ∈K[X ], a ∈K et m ∈N∗.
a est racine de multiplicité m de P ssi il existe Q ∈K[X ] tel que P = (X −a)mQ et a n’est pas racine de Q.

Proposition 13

Preuve.

Soit P ∈K[X ], P ̸= 0, soit n = deg(P ).
P admet au plus n racines comptées avec leur multiplicité.

Corollaire 7

Remarque : Compter les racines avec leur multiplicité signifie qu’on ne compte pas chaque racine de la même façon mais
qu’on leur attribue un poids. Par exemple, pour P = (X −1)3(X −2)2, P admet 2 racines distinctes : 1 de multiplicité 3 et 2 de
multiplicité de 2 donc 5 racines comptées avec leur multiplicité.
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Preuve.

3.5 Polynômes scindés

Soit P ∈K[X ] de degré n ∈N∗. On dit que P est scindé dans K ssi il existe λ ∈K∗, a1, ..., an ∈K tels que :

P =λ
n∏

j=1
(X −a j )

Définition 13

Remarque : La notion de polynôme scindé dépend de K :

• P = X 2 −3X +2 = (X −1)(X −2) est scindé dans R[X ] et dans C[X ].

• P = X 3 +X = X (X 2 +1) = X (X + i )(X − i ) est scindé dans C[X ] et pas dans R[X ].

Soit P ∈K[X ] un polynôme de degré n ∈N∗. P est scindé dans K ssi il existe λ ∈K∗, k ∈N∗, a1, ..., ak ∈K deux à
deux distincts, m1, . . . ,mk ∈N∗ tels que :

P =λ
k∏

j=1
(X −a j )m j .

On a alors :

• λ est le coefficient dominant de P ,

• les a j ∈K sont les racines de P de multiplicité m j ,

•
k∑

j=1
m j = deg(P ).

Proposition 14

Remarque : Ce résultat est la définition dans laquelle on a regroupé les facteurs identiques.

3.6 Somme et produit des racines d’un polynôme

Soit P =
n∑

k=0
ak X k ∈K[X ] un polynôme de degré n ∈N∗, scindé dansK[X ]. Alors il existe λ ∈K∗, x1, ..., xn ∈K tels

que : P =λ
n∏

j=1
(X −x j ). On a :

n∑
i=1

xi =−an−1

an
et

n∏
i=1

xi = (−1)n a0

an
.

Proposition 15 : Relations coefficients/racines
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Remarque : Ce résultat donne la somme et le produit des racines d’un polynômes scindés. On retrouve le cas particulier les
polynômes de degré 2 : P = aX 2 +bX + c où la somme des racines vaut − b

a et le produit vaut c
a .

Preuve.

IV Dérivation dansK[X ]

4.1 Généralités

Soit n ∈N, soit P =
n∑

k=0
ak X k ∈K[X ]. On appelle polynôme dérivé de P et on note P ′ le polynôme défini par :

P ′ =
n∑

k=1
kak X k−1 =

n−1∑
l=0

(l +1)al+1X l .

Définition 14

Remarque : Il n’y a pas d’étude de dérivabilité à faire et surtout pas de taux d’accroissement à écrire.

Soit P ∈R[X ]. On a :
(̃P ′) = (P̃ )′.

Autrement dit la fonction polynomiale associée à la dérivée est la dérivée de la fonction polynomiale associée au
polynôme.

Proposition 16

Soit P ∈K[X ]. On définit par récurrence les polynômes dérivés successifs de P en posant

P (0) = P et ∀n ∈N, P (n+1) = (P (n))′

Définition 15

Soient n,k ∈N,

(X n)(k) =
{ n!

(n−k)! X n−k si k ≤ n
0 sinon.

Proposition 17
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Preuve.

Soit P ∈K[X ], soit k ∈N.

deg(P ′) =
{

deg(P )−1 si degP ≥ 1
−∞ sinon

et deg(P (k)) =
{

deg(P )−k si degP ≥ k
−∞ sinon

Proposition 18

Soit P ∈K[X ] soit n ∈N,
degP ≤ n ⇐⇒ P (n+1) = 0.

Corollaire 8

➪ Exemple 8 :

1. On pose : P = X 4 +3X 3 +2X +5 et Q = X 2 −8X +1.
Calculer les degrés de P.Q ′, (P ◦Q)′, P ′−XQ, P ′−4XQ, P ′′ ◦Q.

2. Soit n ∈N, on pose : P =
n∑

k=0
X k et Q = X 2 −X +1.

Calculer le degré et le coefficient dominant de P ′ ◦Q.

18



4.2 Opérations sur les dérivées

Soient P,Q ∈K[X ]. On a :

1. ∀λ,µ ∈K, (λP +µQ)′ =λP ′+µQ ′.
2. (P.Q)′ = P ′.Q +P.Q ′.

Proposition 19

Soient P,Q ∈K[X ], n ∈N. On a :

(PQ)(n) =
n∑

k=0

(
n

k

)
P (k)Q(n−k).

Proposition 20 : Formule de Leibniz

Soient P,Q ∈K[X ]. On a :
(P ◦Q)′ =Q ′× (P ′ ◦Q)

Proposition 21

4.3 Formule de Taylor polynomiale

Soit P ∈K[X ], soit N ∈N tel que deg(P ) ≤ N . Soit a ∈K. Alors :

P (X +a) =
N∑

k=0

P (k)(a)

k !
X k

et :

P (X ) =
N∑

k=0

P (k)(a)

k !
(X −a)k .

Proposition 22 : Formule de Taylor polynomiale

Remarque : Cette formule permet de privilégier le point a.

Preuve.
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➪ Exemple 9 : Déterminer tous les polynômes P tels que :

P (2) = 6, P ′(2) = 1, P ′′(2) = 4,

∀n ≥ 3, P (n)(2) = 0.
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4.4 Dérivées successives et multiplicité

Soit P ∈K[X ], a ∈K et m ∈N∗.
a est racine de multiplicité m de P ssi, pour tout k ∈ �0,m −1�, a est racine de P (k) et a n’est pas racine de P (m).

Proposition 23

Preuve.

Soit P ∈K[X ], soit a ∈K une racine de multiplicité m ∈N∗ de P , soit k ∈ �0,m −1�.
Alors a est racine de multiplicité m −k de P (k).

Corollaire 9

Preuve.
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Soit P ∈R[X ], soit a ∈C une racine de P de multiplicité m ∈N∗.
Alors a est racine de P de multiplicité m.

Corollaire 10

Preuve.

➪ Exemple 10 :
Soit P ∈R[X ], soit a ∈R. On pose :

Q = 1

2
(X −a)(P ′+P ′(a))−P +P (a).

Montrer que a est une racine au moins triple de Q.

➪ Exemple 11 :

1. Montrer que : (X 2 −4)2|X 6 −9X 4 +24X 2 −16.

2. Soit n ∈N, montrer que : (X −1)2|nX n+1 − (n +1)X n +1.
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V Polynômes irréductibles

5.1 Théorème de D’Alembert-Gauss

Tout polynôme non constant de C[X ] possède au moins une racine dans C.

Théorème 2 : Théorème de d’Alembert-Gauss

• Tout polynôme non constant de C[X ] est scindé.

• Tout polynôme non nul de C[X ] de degré n ≥ 0 admet exactement n racines comptées avec leur multipli-
cité.

Corollaire 11

5.2 Polynômes irréductibles

Soient P,Q ∈K[X ] \ {0}. P et Q sont dits associés ssi il existe λ ∈K∗ tel que P =λQ.

Définition 16

Remarque : Les polynômes associés sont les polynômes tels que P |Q et Q|P .

On dit que P ∈K[X ] est irréductible dansK[X ] si P est non constant et si les seuls diviseurs de P dansK[X ] sont
les polynômes constants non nuls (i.e les polynômes associés à 1) et les polynômes associés à P .
Ainsi, un polynôme P ∈K[X ] est irréductible ssi :

• P est non constant

• ∀A ∈K[X ], A|P =⇒ ∃λ ∈K∗, A =λ ou A =λP

Définition 17

5.3 Polynômes irréductibles de C[X ]

Les polynômes irréductibles de C[X ] sont les polynômes de degré 1.

Proposition 24

Preuve.

23



Soit P un polynôme non nul de C[X ], alors P s’écrit de façon unique (à l’ordre près des facteurs) en produit de
polynômes irréductibles de C[X ] :

P =λ
n∏

k=1
(X −ak )mk

où n ∈N, λ est le coefficient dominant de P , a1, · · · , an sont les racines deux à deux distinctes de P de multiplicité
m1, · · · ,mn ∈N∗.

Théorème 3

➪ Exemple 12 : Soit n ∈N∗, factoriser X n −1 dans C[X ].

Soient P,Q ∈C[X ], on a : P |Q ssi pour toute racine a ∈C de P de multiplicité m, a est racine de Q de multiplicité
m′ avec m′ ≥ m.

Proposition 25

5.4 Polynômes irréductibles dans R[X ]

Les polynômes irréductibles de R[X ] sont

• les polynômes de degré 1 ;

• les polynômes de degré 2 dont le discriminant est strictement négatif.

Proposition 26
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Preuve.

Soit P un polynôme non nul de R[X ], alors P s’écrit de manière unique (à l’ordre près)en produit de polynômes
irréductibles de R[X ] :

P =λ
p∏

i=1
(X −ai )mi

q∏
j=1

(X 2 +b j X + c j )n j

où p, q ∈N, λ ∈ R est le coefficient dominant de P , a1, ..., ap sont les racines réelles deux à deux distinctes de P
de multiplicités respectives m1, ...,mp ∈ N∗, les couples de réels (b1,c1), ..., (bq ,cq ) sont deux à deux distincts et
tels que pour tout k ∈ �1, q�, b2

k −4ck < 0 et n1, ...,nq ∈N∗.

Théorème 4
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➪ Exemple 13 :
Factoriser dans R[X ] les polynômes suivants :

• P1 = X 3 −4X 2 +X +6,

• P2 = X 3 +X 2 −2,

• P3 = (X 2 +1)2 − (X +1)2,

• P4 = (X 2 +2)2 +X 2,

• P5 = X 8 +X 4 +1.

VI Introduction à la décomposition en éléments simples

On appelle fraction rationnelle un quotient de polynômes dont le dénominateur est non nul :

P

Q
, P,Q ∈K[X ], Q ̸= 0.

Les zéros de la fraction rationnelle P
Q sont les racines de P .

Les pôles de la fraction rationnelle P
Q sont les racines de Q.

Définition 18

Remarque : On ne donne pas la définition ni les propriétés formelles des fractions rationnelles. L’objectif de cette partie est
calculatoire. On remarquera quand même que, comme pour les polynômes, il n’y a pas de notion de domaine de définition.

Soient P,Q ∈K[X ], avec Q ̸= 0 tel que Q soit scindé à racines simples : il existe λ ∈K∗, a1, . . . , an ∈K deux à deux

distincts tels que Q = λ
n∏

k=1
(X − ak ). Soit A le quotient de la division euclidienne de P par Q. Alors, il existe un

unique (λ1, . . . ,λn) ∈Kn tel que :
P

Q
= A+

n∑
k=1

λk

X −ak
.

Théorème 5 : décomposition en éléments simples d’une fraction rationnelle à pôles simples
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Remarque :
• Si degP < degQ, alors A = 0.

• Ce théorème ne concerne que les fractions rationnelles à pôles simples, la décomposition en élément simple existe
dans les autres cas mais sa forme doit être donnée.

• La décomposition en éléments simples est utile pour calculer des primitives et des dérivées k-ièmes.

➪ Exemple 14 : Déterminer la décomposition en éléments simples de :

1. F1 = X 2+2X+5
X 2−3X+2

,

2. F2 = 4X 3

X 4−1
.

➪ Exemple 15 :
1. Déterminer la décomposition en éléments simples de :

1

X (X +1)(X +2)
.
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2. On pose :
f : R\ {−2,−1,0} → R

x 7→ 1

x(x +1)(x +2)
.

(a) Déterminer une primitive de f .

(b) Déterminer les dérivées n-ièmes de f pour n ∈N.

3. Soit n ∈N∗, calculer :
n∑

k=1

1

k(k +1)(k +2)
.

➪ Exemple 16 : Soit n ∈N∗, déterminer la décomposition en éléments simples dans C[X ] de :

1. Fn = 1

X n −1
,
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2. Gn = X n−1

X n −1
.
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