
Corrections :
vacances de Noël

Problème 1 : Matrices magiques

1. Posons MV = (ai )i∈[[1,n]] ∈Mn,1(R) et M T V = (bi )i∈[[1,n]] ∈Mn,1(R).
Soit i ∈ [[1,n]], on a :

ai =
n∑

j=1
mi , j 1 =

n∑
j=1

mi , j et bi =
n∑

j=1
m j ,i 1 =

n∑
j=1

m j ,1.

M semi-magique ssi ∃σ(M), ∀i ∈ [[1,n]] ,
n∑

j=1
mi , j =σ(M) et

n∑
j=1

m j ,i =σ(M),

ssi ∃σ(M), ∀i ∈ [[1,n]] , ai =σ(M) et bi =σ(M),

ssi ∃σ(M), MV =σ(M)V et M T V =σ(M)V ,

ssi V est un vecteur propre de M et M T associé à la même valeur propre.

2. (a) • Soit M = (mi , j ) ∈ SMn , soit N = (ni , j ) ∈ SMn . Posons σ(λM +µN ) =λσ(M)+µσ(N ).
Soient i , j ∈ [[1,n]],

n∑
j=1

(λmi , j +µni , j ) =λ
n∑

j=1
mi , j +µ

n∑
j=1

ni , j =λσ(M)+µσ(N ) =σ(λM +µN ).

n∑
i=1

(λmi , j +µni , j ) =λ
n∑

i=1
mi , j +µ

n∑
i=1

ni , j =λσ(M)+µσ(N ) =σ(λM +µN ).

Donc λM +µN ∈ SMn .
• Soit M = (mi , j ) ∈ MGn , soit N = (ni , j ) ∈ MGn . Posons σ(λM +µN ) =λσ(M)+µσ(N ). D’après le point précé-

dent : λM +µN ∈ SMn .
Soit i ∈ [[1,n]],

tr (λM +µN ) =λ
n∑

i=1
mi ,i +µ

n∑
i=1

ni ,i =λσ(M)+µσ(N ) =σ(λM +µN ).

∑
i , j∈[[1,n]],i+ j=n+1

(λmi , j +µni , j ) =λ
∑

i , j∈[[1,n]],i+ j=n+1
mi , j +µ

∑
i , j∈[[1,n]],i+ j=n+1

ni , j

=λσ(M)+µσ(N ) =σ(λM +µN ).

Donc λM +µN ∈ MGn .
(b) Soit M = (mi , j ) ∈ SMn , soit N = (ni , j ) ∈ SMn .

Posons M N = (ai , j ).
On a : ∀i , j ∈ [[1,n]], ai , j =∑n

k=1 mi ,k nk, j .
• Soit i ∈ [[1,n]],

n∑
j=1

ai , j =
n∑

j=1

n∑
k=1

mi ,k nk, j =
n∑

k=1
mi ,k

(
n∑

j=1
nk, j

)
=

n∑
k=1

mi ,kσ(N ) =σ(M)σ(N ).



• Soit j ∈ [[1,n]],

n∑
i=1

ai , j =
n∑

i=1

n∑
k=1

mi ,k nk, j =
n∑

k=1

(
nk, j

n∑
i=1

mi ,k

)
=

n∑
k=1

nk, jσ(M) =σ(N )σ(M).

Donc, en posant σ(M N ) = σ(M)σ(N ), on a : ∀i ∈ [[1,n]],
n∑

i=1
ai , j = σ(M N ) et ∀ j ∈ [[1,n]],

n∑
j=1

ai , j = σ(M N ).

Donc M N est semi-magique.

3. • Posons σ(E) = n.

– Soit i ∈ [[1,n]],
n∑

j=1
ei , j =

n∑
j=1

1 = n =σ(E).

– Soit j ∈ [[1,n]],
n∑

i=1
ei , j =

n∑
i=1

1 = n =σ(E).

– tr(E) =
n∑

i=1
ei ,i =

n∑
i=1

1 = n =σ(E).

–
∑

i , j∈[[1,n]],i+ j=n+1
ei , j =

n∑
i=1

ei ,n+1−i =
n∑

i=1
1 = n =σ(E).

Donc E est magique.
• – Pour p = 1, E p = E = np−1E .

– Soit p ∈N∗, supposons que E p = np−1E .
Alors E p+1 = E p .E = np−1E 2 = np−1.nE = np E .

– Ainsi, par récurrence :
∀p ≥ 1, E p = np−1E .

4. Soit M = (mi , j ) ∈ SMn .

E M =
(

n∑
k=1

ei ,k mk, j

)
=

(
n∑

k=1
mk, j

)
= (σ(M)) =σ(M)E ,

ME =
(

n∑
k=1

mi ,k ek, j

)
=

(
n∑

k=1
mi ,k

)
= (σ(M)) =σ(M)E .

Donc :
E M =σ(M)E = ME .

5. (a) • Si c ̸= 0, M 3 + aM 2 + bM + cI3 = 0. Donc M 3 + aM 2 + bM = −cI3. Ainsi M(M 2 + aM + bI3) = −cI3. Donc
M(−1

c (M 2 +aM +bI3)) = I3.

Ainsi M est inversible (et M−1 = −1
c (M 2 +aM +bI3)).

• On a σ(M) = tr(M) = 0, donc d’après la question précédente E M = 0, ainsi E M M−1 = 0 d’où E = 0 ce qui est
absurde. Donc : c = 0.

• On a c = 0 et a =−tr(M) = 0. Donc M 3 +bM = 0.
Posons λ=−b, alors : M 3 =λM .

• Montrons que : ∀p ∈N, M 2p+1 =λp M .
– Pour p = 0, M 2p+1 = M =λp M .
– Soit p ∈N, supposons que M 2p+1 =λp M .

Alors :
M 2(p+1)+1 = M 2p+1.M 2 = (λp M).M 2 =λp M 3 =λp .λM =λp+1M .

– Ainsi, par récurrence : ∀p ∈N, M 2p+1 =λp M .
• Comme M est magique, alors, pour tout p ∈N, M 2p+1 =λp M est magique.

Donc pour tout entier p impair, M p est magique.
(b) • On a : M p = (

M0 + 1
3 tr(M)E

)p
. Or, d’après 4. E M = ME donc M0E = E M0, ainsi, d’après la formule du binôme

de Newton :

M p =
p∑

k=0

(
p
k

)
M k

0

(
1

3
tr(M)E

)p−k

=
p∑

k=0

(
p
k

)
1

3p−k
tr(M)p−k M k

0 E p−k =
p−1∑
k=0

(
p
k

)
1

3p−k
tr(M)p−k np−k−1M k

0 E +M p
0 .

• Montrons que : ∀k ∈N, M k
0 E =σ(M0)k E .

– Pour k = 0, M k
0 E = E =σ(M0)k E .

– Soit k ∈N, supposons que M k
0 E =σ(M0)k E .

Comme M ,E ∈ SMn , on a : M0 ∈ SMn donc :

M k+1
0 E = M k

0 .M0E =σ(M0)M k
0 E =σ(M0).σ(M0)k E =σ(M0)k+1E .

– Donc, par récurrence : ∀k ∈N, M k
0 E =σ(M0)k E .



• Ainsi :

M p =
p−1∑
k=0

(
p
k

)
1

3p−k
tr(M)p−k np−k−1σ(M0)k E +M p

0 .

• Comme E est magique, alors
p−1∑
k=0

(
p
k

)
1

3p−k
tr(M)p−k np−k−1σ(M0)k E est magique.

• M0 est magique et tr(M0) = tr(M)− 1
3 tr(M).tr(E) = tr(M)− 1

3 tr(M).3 = 0, donc, d’après la question précé-

dente, M p
0 est magique pour p impair.

• Ainsi, si p est impair, M p est magique.

6. (a)

A2 =


4 0 0 0
0 2 1 1
0 1 2 1
0 1 1 2

=


2 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0

+


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

= A+2I4.

(b) • Pour p = 0,posons a0 = 0 et b0 = 1, alors Ap = I4 = ap A+bp I4.
• Soit p ∈N, supposons qu’il existe deux entiers positifs ap et bp tels que : Ap = ap A+bp I4.

Ap+1 = A.Ap = ap A2 +bp A = ap (A+2I4)+bp A = (ap +bp )A+2ap I4.

Posons ap+1 = ap +bp et bp+1 = 2ap . Alors ap+1 et bp+1 sont deux entiers positifs tels que Ap+1 = ap+1 A +
bp+1B .

• Donc, par récurrence,pour tout p ∈N, il existe deux entiers positifs ap et bp tels que : Ap = ap A+bp I d .
(c) Soit p ≥ 2, supposons Ap magique. Alors, comme A est magique, Ap −ap A est magique. Donc bp I4 est magique.

Or a0 = 0, b0 = 1, a1 = 1, b1 = 0 et a2 = 1 > 0, b2 = 2 > 0. De plus : ∀p ∈N, ap+1 = ap +bp et bp+1 = 2ap , donc, par
récurrence immédiate : ∀p ≥ 2, bp > 0.
Ainsi I4 est magique, ce qui est absurde.
Donc Ap n’est pas magique.



Problème 2 : Autour du théorème de Césaro

1. (a) • Pour n = 2, x2 = 2
3 donc 0 < x2 < 1.

• Soit n ≥ 2, supposons que 0 < xn < 1. Alors :

xn+1 = xn(1+xn)

1+2xn
> 0.

et :

xn+1 −1 = xn(1+xn)− (1+2xn)

1+2xn
1 = x2

n −xn −1

1+2xn
.

Or le discriminant associé à x2 −x −1 = 0 est ∆= 5 et ses racines sont 1±p5
2 .

Or : 1−p5
2 < 0 < xn < 1 < 1+p5

2 donc : x2
n −xn −1 > 0, ainsi xn+1 −1 > 0.

Donc : 0 < xn+1 < 1.
• On a donc prouvé par récurrence que :

∀n ≥ 2, 0 < xn < 1.

(b) Soit n ∈N∗,

xn+1 −xn = xn(1+xn)−xn(1+2xn)

1+2xn
= −x2

n

1+2xn
≤ 0.

Donc (xn)n∈N∗ est décroissante.
(c) • La suite (xn) est décroissante et minorée par 0 donc (xn) converge vers l ∈ [0,1].

• Par passage à la limite, on a donc : l = l (1+l )
1+2l . Or :

l = l (1+ l )

1+2l
⇔ l = 0 ou 1 = 1+ l

1+2l
⇔ l = 0 ou 1+2l = 1+ l ⇔ l = 0.

Donc (xn) converge vers 0.
(d) Soit n ∈N∗,

1

xn+1
− 1

xn
= 1+2xn

xn(1+xn)
− 1

xn
= 1+2xn − (1+xn)

xn(1+xn)
= 1

xn +1
.

(e) Comme lim xn = 0, on a : lim 1
xn+1 = 1.

Ainsi limun = 1.
(f) • Soit n ∈N∗,

vn = 1

n

n∑
k=1

uk = 1

n

n∑
k=1

(
1

xk+1
− 1

xk

)
.

Donc, par sommes télescopiques :

vn = 1

n

(
1

xn+1
− 1

x1

)
.

• Comme limun = 1, par théorème de Césaro, lim vn = 1.
Or, soit n ∈N∗, on a : vn = 1

nxn+1
− 1

n .

Donc : 1
nxn+1

= vn + 1
n , ainsi : lim 1

nxn+1
= 1 donc limnxn+1 = 1.

Or lim xn+1 = 0, d’où lim(n +1)xn+1 = 1.
Ainsi :

lim
n→+∞nxn = 1.

2. (a) Posons l = lim xn , alors lim(xn+1 −xn) = l − l = 0.
Donc la suite (xn+1 −xn)n∈N∗ converge vers 0.

(b) i. Posons : ∀n ∈N∗, un = xn+1 −xn .
Alors, comme limun = l , on a, d’après le théorème de Césaro : lim vn = l .
Or, soit n ∈N∗,

vn = 1

n

n∑
k=1

(xk+1 −xk ) = 1

n
(xn+1 −x1),

par somme télescopique.
Ainsi : lim 1

n (xn+1 −x1) = l .
Or lim x1

n = 0, d’où lim xn+1
n = l .

De plus, lim n
n+1 = 1 donc, par produit : lim xn+1

n+1 = l .
Donc :

lim
xn

n
= l .



ii. Soit n ∈N∗, on a : xn = xn
n .n.

Or lim xn
n = l ̸= 0 et limn =+∞ donc :

lim xn =
{ +∞ si l > 0

−∞ si l < 0.

iii. Posons : ∀n ∈N∗, xn = lnn.
Soit n ∈N∗,

xn+1 −xn = ln(n +1)− ln(n) = ln

(
1+ 1

n

)
.

Donc lim(xn+1 −xn) = 0 et (xn) diverge.
Ainsi, dans le cas où l = 0, la suite (xn)n∈N∗ n’est pas nécessairement convergente.

3. (a) Soit n ∈N,

vn = 1

n

n∑
k=1

(−1)k = 1

n

−1+ (−1)n+1

1− (−1)
= −1+ (−1)n+1

2n
.

Ainsi, comme (−1+ (−1)n+1) est bornée et lim 1
2n = 0, on a :

lim vn = 0.

(b) On a (vn) qui converge et (un) qui n’a pas de limite. Ainsi la réciproque du théorème de Césaro est fausse.

4. (a) Soit n ∈N∗, comme (un) est croissante, on a :

2n∑
k=n+1

uk ≥
2n∑

k=n+1
un+1 = (2n − (n +1)+1)un+1 = nun+1.

(b) Soit n ∈N∗,

un+1 ≤ 1

n

2n∑
k=n+1

uk = 1

n

(
2n∑

k=1
uk −

n∑
k=1

uk

)
= 1

n
(2nv2n −nvn) = 2v2n − vn .

(c) • (vn) est convergente donc bornée, ainsi (2v2n − vn) est bornée. Donc (un) est majorée.
• (un) est croissante et majorée donc (un) converge.
• Posons l = limun , alors, d’après le théorème de Césaro, lim vn = l donc :

limun = lim vn .

(d) On a montré que si (un) est croissante, alors la réciproque du théorème de Césaro est vraie.


